亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? library for SVMclassification and regression. It solves C-SVM classification, nu-SVM classification
??
字號:
Python-to-libsvm interfaceIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed a lot of useful suggestions and help.Installation============The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.4 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary tohave SWIG installed because the generated svmc_wrap.c is included inthis package (It was generated using SWIG 1.3.31). If you prefergenerating the interface with SWIG on your own, you can simply removethe generated files with	make morecleanbefore building the module. Note that SWIG version > 1.3.7 should be used.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.pyd is ready in thedirectory windows/python. You need to copy it to this directory.  The.pyd file depends on different versions of python, so you may have tore-make it by following the instruction of building windows binariesin libsvm README.Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.pyd) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONPATHpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the trainingprocess. The attributes in svm_parameter include svm_type,kernel_type, degree, gamma, coef0, nu, cache_size, C, eps, p,shrinking, nr_weight, weight_label, and weight. Available svm typesinclude C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user cansetup the parameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])For precomputed kernels, the first element of each instance must bethe ID. For example,	samples = [[1, 0, 0, 0, 0], [2, 0, 1, 0, 1], [3, 0, 0, 1, 1], [4, 0, 1, 1, 2]]	problem = svm_problem(labels, samples);For more details of precomputed kernels, please check README of theparent directory.Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To conduct n-fold cross validation; predicted labels in the validationprocess are returned.	target = cross_validation(prob, param, n)To predict a new sample with the model:	r = m.predict([1, 1, 1])To obtain decision values of predicting a sample:	d = m.predict_values([1, 1, 1])	To predict a new sample and obtain probability estimates;return value is a dict that maps labels to probabilities.	prd, prb = m.predict_probability([1, 1, 1])	sample of prd : 1.0	sample of prb : {1:0.6, -1:0.4}To obtain sigma of the probability density function for regression;see ../README for the definition of the function.	sigma = m.get_svr_probability()To obtain the probability density function for regression; see../README for the definition of the function.	pdf = m.get_svr_pdf()	probability = pdf(z)To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests various kernels on a three-class problem withC-SVM. It also demonstrates how to obtain decision values andprobability estimates.test_cross_validation.py demonstrates loading data from a file anddoes a ten-fold cross validation on the heart_scale dataset. It makesuse of cross_validation.py which calls the C++ cross validationsubroutine.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本成人在线电影网| 亚洲色图第一区| 国产美女精品一区二区三区| 日韩精品综合一本久道在线视频| 蜜臀av一区二区在线免费观看| 日韩精品一区二区三区老鸭窝 | 国产精品毛片高清在线完整版| 大桥未久av一区二区三区中文| 中文字幕中文字幕在线一区| 一本大道av伊人久久综合| 午夜久久久影院| 日韩精品一区二区三区老鸭窝| 国产精品一二三在| 亚洲欧美经典视频| 在线播放/欧美激情| 韩国三级电影一区二区| 国产欧美精品国产国产专区| 91麻豆精东视频| 日本亚洲欧美天堂免费| 久久天天做天天爱综合色| 99精品桃花视频在线观看| 午夜成人在线视频| 久久精品一二三| 色94色欧美sute亚洲线路二| 日韩—二三区免费观看av| 欧美精品一区二区在线播放| 91免费版在线看| 麻豆91在线播放免费| 亚洲欧美怡红院| 欧美一区二区在线免费观看| 国产精品66部| 五月天激情综合网| 国产精品福利av| 日韩精品自拍偷拍| 日本韩国一区二区| 国产精品一区二区果冻传媒| 亚洲午夜久久久久| 国产精品污网站| 日韩一卡二卡三卡国产欧美| 99综合电影在线视频| 另类欧美日韩国产在线| 亚洲天堂精品在线观看| 欧美精品一区二区三区在线播放| 欧美羞羞免费网站| 国产成人鲁色资源国产91色综 | 4438x成人网最大色成网站| 成人综合在线观看| 青草av.久久免费一区| 综合久久国产九一剧情麻豆| 精品久久久久久久久久久久包黑料| 色偷偷成人一区二区三区91| 国产综合成人久久大片91| 国产九九视频一区二区三区| 午夜精品久久久久久久99樱桃| 最好看的中文字幕久久| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 一区二区三区四区蜜桃| 久久久久久久久久久久久夜| 欧美日韩国产综合一区二区| 一本大道av一区二区在线播放| 国产精品羞羞答答xxdd| 老司机免费视频一区二区三区| 樱花草国产18久久久久| 中文字幕第一区| 久久色.com| 久久综合久久综合久久综合| 欧美一级高清片在线观看| 欧美日韩在线播放三区四区| 色婷婷综合久久久中文字幕| 99久久伊人久久99| 成人亚洲一区二区一| 国产乱码一区二区三区| 狠狠色丁香久久婷婷综合丁香| 日韩二区在线观看| 天堂在线亚洲视频| 日韩国产欧美在线视频| 舔着乳尖日韩一区| 日本不卡视频在线观看| 日本中文字幕一区| 日韩av二区在线播放| 天天操天天色综合| 免费人成在线不卡| 极品少妇xxxx精品少妇| 国内外成人在线视频| 国产精品亚洲第一区在线暖暖韩国 | 日本欧美在线观看| 美女性感视频久久| 韩国视频一区二区| 国产91综合一区在线观看| 成人永久aaa| 91久久人澡人人添人人爽欧美| 色欧美乱欧美15图片| 欧美日本一区二区在线观看| 日韩一区二区三区视频在线观看| 精品国产一区二区三区av性色| 日韩欧美视频在线| 欧美国产亚洲另类动漫| 亚洲欧美一区二区三区极速播放| 亚洲国产精品久久久男人的天堂| 日韩精品电影一区亚洲| 韩国精品久久久| 99久久精品99国产精品| 欧美日韩在线播放三区| 欧美不卡激情三级在线观看| 久久亚洲一级片| 亚洲免费观看高清完整版在线 | 国产成人精品免费在线| 97精品国产97久久久久久久久久久久| 91蝌蚪porny| 欧美日韩精品一区二区天天拍小说 | 国内精品久久久久影院薰衣草| 国产一区二区美女| 一本久久精品一区二区| 91精品黄色片免费大全| 国产婷婷色一区二区三区四区| 亚洲美女区一区| 精品一区免费av| 91浏览器打开| 日韩免费高清电影| 亚洲欧美日韩系列| 久久99久国产精品黄毛片色诱| www.亚洲国产| 欧美一区二区女人| 亚洲视频资源在线| 国产乱码精品一区二区三区五月婷 | 欧美视频日韩视频在线观看| 精品成人佐山爱一区二区| 亚洲欧美二区三区| 国产美女精品在线| 欧美日韩aaa| 亚洲欧美一区二区视频| 美女在线观看视频一区二区| 色婷婷久久久亚洲一区二区三区| 2024国产精品| 亚洲成人动漫精品| 91啪亚洲精品| 国产日本亚洲高清| 免费一级片91| 欧美手机在线视频| 国产精品日产欧美久久久久| 蜜芽一区二区三区| 在线国产亚洲欧美| 国产精品女人毛片| 国产在线视频一区二区三区| 欧美日韩亚洲综合| 成人免费视频在线观看| 紧缚奴在线一区二区三区| 欧美日韩1234| 亚洲综合免费观看高清完整版在线 | 久久精品综合网| 麻豆中文一区二区| 欧美日韩精品欧美日韩精品一 | 亚洲一级不卡视频| 成人av在线资源网站| 久久中文字幕电影| 日本伊人色综合网| 欧美精品一二三四| 亚洲综合久久久久| 色综合久久久网| 亚洲色图在线播放| 成人免费电影视频| 国产香蕉久久精品综合网| 久久国产成人午夜av影院| 91精品国产综合久久久久久漫画| 亚洲香蕉伊在人在线观| 懂色一区二区三区免费观看| 久久香蕉国产线看观看99| 久久99国产精品尤物| 精品国产欧美一区二区| 久久99国内精品| 精品国产乱码久久久久久浪潮 | 亚洲成a人在线观看| 欧美性猛交xxxxxx富婆| 亚洲国产一区视频| 欧美日韩国产精品成人| 日韩和欧美一区二区| 91精品国产综合久久久久久久 | 日韩欧美在线网站| 色综合久久久久网| 亚洲人xxxx| 欧美日韩在线播放一区| 天堂蜜桃91精品| 精品日韩在线一区| 国产伦精品一区二区三区免费迷 | 五月天视频一区| 日韩欧美不卡在线观看视频| 久久精品噜噜噜成人88aⅴ| 久久久久久久综合| 成人性生交大片免费看中文| 国产精品成人在线观看| 在线观看中文字幕不卡| 日韩黄色免费电影| 国产免费观看久久| 在线视频综合导航| 久久电影网站中文字幕| 国产精品成人在线观看| 欧美日韩黄视频| 国产精品一区一区| 亚洲一区视频在线观看视频| 日韩欧美区一区二|