?? lms.m
字號:
function [A,E] = lms(x,d,mu,nord,a0)%LMS Adaptive filtering using the Widrow-Hoff LMS algorithm.%---%USAGE [A,E] = lms(x,d,mu,nord,a0)%% x : input data to the adaptive filter.% d : desired output% mu : adaptive filtering update (step-size) parameter% nord : number of filter coefficients% a0 : (optional) initial guess for FIR filter % coefficients - a row vector. If a0 is omitted% then a0=0 is assumed.%% The output matrix A contains filter coefficients.% - The n'th row contains the filter coefficients at time n% - The m'th column contains the m'th filter coeff vs. time.% - The output vector E contains the error sequence versus time.%% see also NLMS and RLS%%---------------------------------------------------------------% copyright 1996, by M.H. Hayes. For use with the book % "Statistical Digital Signal Processing and Modeling"% (John Wiley & Sons, 1996).%---------------------------------------------------------------X=convm(x,nord);[M,N] = size(X);if nargin < 5, a0 = zeros(1,N); enda0 = a0(:).';E(1) = d(1) - a0*X(1,:).'; A(1,:) = a0 + mu*E(1)*conj(X(1,:));if M>1for k=2:M; E(k) = d(k) - A(k-1,:)*X(k,:).'; A(k,:) = A(k-1,:) + mu*E(k)*conj(X(k,:)); end;end;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -