?? gaus_jordan_method.m
字號(hào):
function [x, err] = gausjord(A, b)
% Gauss - Jordan Routine for solution of single system
%
% USAGE: [x, err] = gauselim(A, b)
% where A = square coefficient matrix, size n X n
% b = single RHS column vector, size n X 1
% x = solution column vector, size n X 1
% err = error code:
% = 0 = no error
% = 1 = singular matrix detected
% = 2 = not a square matrix
err = 0;
%set up space for solution vector
x = zeros(size(b));
% check that input is legal
[n,m] = size(A);
if n ~= m
disp('Error in gauselim: Matrix must be square.')
err = 2; return
end
% form augmented matrix by adding b to last column of A
m = n+1; A(:,m) = b;
% ELIMINATION
for k = 1:n
if k < n
[A, err] = gepivot(A, k); % partial pivoting
end
if err ~= 0
disp('Matrix is singular'); return
end
for i = 1:n
if i ~= k
term = A(i,k)/A(k,k);
for j = k:m
A(i,j) = A(i,j) - term*A(k,j);
end
end
end
% normalize
temp = A(k,k)
for j = k:m
A(k,j) = A(k,j)/temp;
end
end
x = A(:,m);
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -