亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? cpann.htm

?? this file is leverage algorithm written in matlab as m-file and tested in matlab.so anyone can ue th
?? HTM
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Kohonen and CPANN toolbox</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
<meta name="generator" content="HAPedit 3.0">

<link href = "style_structure.css" rel="stylesheet" type="text/css">
<link href = "style_text.css" rel="stylesheet" type="text/css">
<link href = "style_tables.css" rel="stylesheet" type="text/css">

</head>
<body>
<div id="container">
<a name="top"></a>

    <div id="header">
		<iframe src="header.htm" width="740" height="60" scrolling="no" frameborder="0">
  			no i_frames allowed :: change browser
	  	</iframe>
    </div>

    <div id="content">

		<table width="740" border="0" cellpadding="0" cellspacing="0">
  		<tr>
		<td width="150" valign="top">
		
		<iframe src="menu_lateral.htm" width="135" height="268" scrolling="no" frameborder="0">
  			no i_frames allowed :: change browser
	  	</iframe>
		
		</td>

    	<td valign="top">

		  <div align="justify">
		    <div id="tab_duo_contenitor" class="text">
		    <span class="title_page">Counterpropagation ANNs</span>		
		    <BR>
		    <BR>
    
		<div id="tab_duo_text">
		      <div id="tab_space_lateral"><a href="#sub_1" class="lnk_text">Starting the model</a></div>
		      <div id="tab_space_lateral"><a href="#sub_2" class="lnk_text">How to read the results</a></div>
		      <div id="tab_space_lateral"><a href="#sub_3" class="lnk_text">How to plot the results</a></div>
		      <div id="tab_space_lateral"><a href="#sub_4" class="lnk_text">Prediction of new samples</a></div>
		      <div id="tab_space_lateral"><a href="#sub_5" class="lnk_text">Cross validation of Counterpropagation ANNs</a></div>
	   	</div>
    
		<BR><a name="sub_1"></a>
		    <BR>
		    
		<span class="title_paragraph">_ Starting the model</span>
		    <BR>
		    <BR>
		    Once <a href="start.htm#sub_1" class="lnk_text">data</a> have been prepeared and <a href="start.htm#sub_2" class="lnk_text">settings</a> have been defined, you can build a classification model based on CPANNs by typing the following code in the MATLAB command window:
			<BR>
		    <BR>
			
			<div id="tab_duo_text" class="text_math">
				model = model_cpann(X,class,settings);
  	        </div>
			<BR>

		    where X is the <a href="start.htm#sub_1" class="lnk_text">data matrix</a> (with dimension [n x p], n samples, p variables), class is the <a href="start.htm#sub_1" class="lnk_text">class vector</a> [n x 1], and settings is the <a href="start.htm#sub_2" class="lnk_text">setting structure</a>. Depending on the size and epochs used to train the model, MATLAB could take some minutes to calculate it. Anyway, in the MATLAB command window the number of processed epochs will be displayed.<BR>
		    <BR>
			[<a href="#top" class="lnk_text">-> top</a>]
		    <BR>
		    <BR> <a name="sub_2"></a>
		    <BR>
		    
		<span class="title_paragraph">_ How to read the results</span>
		    <BR>
		    <BR>
		    The given output (model) is a structure, with several fields containing all the results.

			<BR><BR>         
			<B>model.net.W</B><BR>
			this field contains the kohonen weights with dimension [size x size x p]

			<BR><BR>         
			<B>model.net.W_out</B><BR>
			this field contains the output weights with dimension [size x size x c], where c is the number of defined classes

			<BR><BR>         
			<B>model.net.settings</B><BR>
			contains the used settings (epochs, size, etc...)

			<BR><BR>         
			<B>model.net.neuron_ass</B><BR>
			contains the class assignation of each neuron [size x size]

			<BR><BR>         
			<B>model.scal</B><BR>
			is a structure containing all the scaling parameters (minimum and maximum values for all the variables)

			<BR>
			<BR>         
			<B>model.res.top_map</B><BR>
			contains the sample positions (coordinates) in the map, with dimensions [n x 2]. The top map coordinates are coded in the following way:
		    <BR>
		    <BR>
			<center><img src="kohonen_top_map.gif" width="393" height="311" border="1"></center>
		    <BR>
			where, for example, the red point represents a generic sample placed in the neuron with coordinates [3,2];

			<BR>
			<BR>         
			<B>model.res.class_calc</B><BR>
			contains the class assignation of each sample [n x 1]

			<BR><BR>         
			<B>model.res.class_param</B><BR>
			is a structure containing some classification results:
			<BR>
			- confusion matrix ('conf_mat') is a matrix displaying  the real classes (rows) and assigned classes (columns). The last column represents not assigned samples.
			<BR>
			- non-error rate ('ner') is the percentage of correclty assigned samples
			<BR>- error rate ('er') is the percentage of not correclty assigned samples
			<BR>
			- percentage of not assigned samples  ('not_ass')
			<BR>
			- precision, specificity and sensitivity of each class 

		    <BR>
		    <BR>
			[<a href="#top" class="lnk_text">-> top</a>]		    
    		<BR>
		    <BR><a name="sub_3"></a>
		    <BR>
		    
		<span class="title_paragraph">_ How to plot the results</span>
		    <BR>
		    <BR>
		    You can open a MATLAB GUI to visualize the results. To do so, type:
			<BR>
		    <BR>
			<div id="tab_duo_text" class="text_math">
				visualize_model(model);
  	        </div>
			<BR>
		    where <a href="#sub_1" class="lnk_text">model</a> is the previously described model structure and class is the <a href="start.htm#sub_1" class="lnk_text">class vector</a> [n x 1]. The follwoing GUI will appear:
			<BR>
		    <BR>
			<center>
              <img src="kohonen_visualize.gif" width="550" height="450">            </center>
			<BR>
		    this plot represent the top map, where samples and variable weights can be displayed. &quot;Display labels&quot; and &quot;Display weights&quot; set the sample labels and variable weights respectivly. 
			Neurons can be coloured from white (weight equal to zero, minimum value) to black (weight equal to 1, maximum  value). &quot;Update&quot; is the button for updating the plot. You can move the map (&quot;up&quot;, &quot;down&quot;, &quot;right&quot; and &quot;left&quot;), while &quot;get neuron weights&quot; opens a new plot diplaying all the weights of a selected neuron and &quot;get neuron labels&quot; opens a new plot with the list of all the sample labels of a selected neuron. <BR>
		    <BR>
			[<a href="#top" class="lnk_text">-> top</a>]
			<BR>
		    <BR><a name="sub_4"></a>
		    <BR>
		    
		<span class="title_paragraph">_ Prediction of new samples</span>
		    <BR>
		    <BR>
		    In order to project new samples in an existing net, type:
			<BR>
		    <BR>
			<div id="tab_duo_text" class="text_math">
				pred = pred_cpann(Xnew,model);
  	        </div>
			<BR>
		    where Xnew is the data matrix of the samples to be predicted (with dimension [n x p], n new samples, p variables)
			and <a href="#sub_1" class="lnk_text">model</a> is the previously described model structure.

			Pred is a structure, containing the following field: 
			<BR><BR>         
			<B>pred.class</B><BR>
			contains the predicted class of the samples [n x 1].

			<BR><BR>         
			<B>pred.top_map</B><BR>
			contains the positions (coordinates) of the predicted samples in the Kohonen Map.

			<BR>
		    <BR>
			[<a href="#top" class="lnk_text">-> top</a>]
			<BR>
		    <BR><a name="sub_5"></a>
		    <BR>
		    
		<span class="title_paragraph">_ Cross validation of Counterpropagation ANNs</span>
		    <BR>
		    <BR>
		    Cross validation is performed with venetian blinds. For example, with 3 cross-validation groups the split of the first group will be [t,0,0,t,0,0,....,t,0,0], while the second one will be [0,t,0,0,t,0,....,0,t,0], and so on.
			In order to cross validate CPANNs, type:
			<BR>
		    <BR>
			<div id="tab_duo_text" class="text_math">
				cv = cv_cpann(X,class,settings,cv_groups)
  	        </div>
			<BR>
		    where X is the <a href="start.htm#sub_1" class="lnk_text">data matrix</a> (with dimension [n x p], n samples, p variables),
			class is the <a href="start.htm#sub_1" class="lnk_text">class vector</a> [n x 1] and cv_groups is the number of cross-validation groups. The output is a structure (cv) with the following fields: 
			<BR><BR>         
			<B>cv.pred_class</B><BR>
			contains the predicted class of the samples [n x 1] during cross validation.			

			<BR><BR>         
			<B>cv.class_param</B><BR>
			is a structure containing some classification results:
			<BR>
			- confusion matrix ('conf_mat') is a matrix displaying displays the real classes (rows) and assigned classes (columns). The last column represents not assigned samples. <BR>
			- non-error rate ('ner') is the percentage of correclty assigned samples <BR>
			- error rate ('er') is the percentage of not correclty assigned samples <BR>
			- percentage of not assigned samples  ('not_ass') <BR>
			- precision, specificity and sensitivity of each class<BR>
		    <BR>
			[<a href="#top" class="lnk_text">-> top</a>]
			<BR>
			<BR>
			<BR>&nbsp;  	     
		 </div>
  
		  </div></td>
  		</tr>
	  </table>

    </div>

    <div id="footer">
		<iframe src="footer.htm" width="700" height="13" scrolling="no" frameborder="0">
  			no i_frames allowed :: change browser
	  	</iframe>
	</div>
</div>
</body>
</html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲欧美综合另类在线卡通| 欧美情侣在线播放| 成人黄色在线网站| fc2成人免费人成在线观看播放| 精品制服美女丁香| 久久国产精品区| 国产一区二区三区精品视频| 国产一区二区0| 91麻豆国产自产在线观看| 99国产精品久久久久久久久久久| 91啪在线观看| 欧美日韩免费观看一区三区| 91精品国产aⅴ一区二区| 欧美一区二区三区思思人| 在线不卡中文字幕播放| 欧美xingq一区二区| 成人性色生活片免费看爆迷你毛片| 久久精品亚洲乱码伦伦中文| 亚洲国产乱码最新视频| 午夜精品福利久久久| 蜜桃视频一区二区三区| 九色porny丨国产精品| 亚洲成人资源在线| 中文字幕在线一区免费| 久久综合九色欧美综合狠狠 | 色综合久久中文字幕| 中文字幕视频一区| 国产午夜精品一区二区三区嫩草| 日韩欧美中文字幕精品| 欧美人与性动xxxx| 欧美另类久久久品| 天涯成人国产亚洲精品一区av| 麻豆成人久久精品二区三区红| 一区二区三区欧美日| 亚洲日韩欧美一区二区在线| 亚洲午夜电影网| 国产最新精品精品你懂的| 国产剧情一区在线| 欧美在线观看一二区| 久久女同精品一区二区| 爽好多水快深点欧美视频| 国产精品一级黄| 欧美mv和日韩mv国产网站| 26uuu国产日韩综合| 亚洲一区二区三区免费视频| 99精品视频免费在线观看| 国产色一区二区| 奇米精品一区二区三区在线观看一 | 欧美一区二区久久| 亚洲成人动漫一区| 日韩欧美高清在线| 欧美在线观看视频一区二区 | 秋霞电影网一区二区| 精品国产一区二区在线观看| 国产一区二区三区视频在线播放| 精品美女在线播放| 色综合久久88色综合天天| 天天综合色天天综合| 欧美一区二区三区视频在线| 国产成人av电影| 亚洲一卡二卡三卡四卡无卡久久 | 日韩中文字幕亚洲一区二区va在线| 色综合久久中文字幕综合网| 久久国产尿小便嘘嘘尿| 一本色道久久综合亚洲aⅴ蜜桃 | 亚洲国产成人私人影院tom| 精品国产一区二区在线观看| 91精品国产麻豆国产自产在线| 在线观看一区二区视频| 欧美伊人久久大香线蕉综合69| 免费视频最近日韩| 亚洲欧美激情一区二区| 国产午夜精品一区二区三区四区| 一本久久a久久免费精品不卡| 夜夜嗨av一区二区三区中文字幕 | 午夜成人在线视频| 亚洲黄色小说网站| 国产日韩欧美在线一区| 2023国产精品视频| 91精品国产黑色紧身裤美女| 在线视频国产一区| 成人黄色777网| 99久久国产综合色|国产精品| 丁香六月综合激情| 国产+成+人+亚洲欧洲自线| 国产精品资源在线| 国产成人精品亚洲777人妖| 国产91丝袜在线播放九色| 国产成都精品91一区二区三| 国产河南妇女毛片精品久久久| 国产一区999| av网站免费线看精品| 色偷偷成人一区二区三区91| 97成人超碰视| 欧美人妖巨大在线| 26uuu亚洲| 亚洲欧美日韩一区二区| 亚洲午夜免费视频| 国产做a爰片久久毛片| 99久免费精品视频在线观看| 成人av网站免费观看| 欧美日韩夫妻久久| 久久网站热最新地址| 亚洲精品ww久久久久久p站| 亚洲国产成人高清精品| 狠狠色综合播放一区二区| 成人高清视频在线观看| 在线视频综合导航| 337p粉嫩大胆色噜噜噜噜亚洲| 中国av一区二区三区| 婷婷综合在线观看| 成人av在线一区二区三区| 日韩欧美视频一区| 亚洲综合无码一区二区| 国产一区二区电影| 91精品国产色综合久久| 一区二区久久久久| 国产九色精品成人porny| 欧美日本乱大交xxxxx| 亚洲精品久久嫩草网站秘色| 韩国成人福利片在线播放| 欧美日韩1234| 亚洲免费色视频| 色综合一个色综合| 亚洲免费观看高清完整| www.爱久久.com| 中文字幕免费观看一区| 国产一区二区三区蝌蚪| 精品美女一区二区三区| 精品一区中文字幕| xnxx国产精品| 国产不卡视频一区| 国产精品国产三级国产aⅴ无密码| 国产精品影视天天线| 国产欧美一区在线| 99国产精品久久久久久久久久| 亚洲色图一区二区三区| 91电影在线观看| 免费观看成人av| 欧美精品一区二区三区视频| 国产69精品久久99不卡| 亚洲色图在线看| 日韩一区二区三区av| 久久成人麻豆午夜电影| 欧美激情在线免费观看| 91色porny在线视频| 日韩av中文在线观看| 精品久久人人做人人爰| av亚洲精华国产精华| 亚洲国产综合91精品麻豆| 欧美v日韩v国产v| 91麻豆福利精品推荐| 日产国产高清一区二区三区 | 亚洲国产一区二区三区| 精品国产乱码久久| 91激情在线视频| 国精产品一区一区三区mba视频| 一区二区三区.www| 久久九九久久九九| 91麻豆精品国产91久久久| 成人av网站在线| 国产精品99久久久久| 日精品一区二区| 樱桃视频在线观看一区| 国产偷国产偷精品高清尤物 | 亚洲成av人片一区二区梦乃| 久久久久97国产精华液好用吗| 欧美中文字幕一区| 色综合天天综合网天天狠天天| 国产精品一区免费在线观看| 日韩在线a电影| 日本不卡不码高清免费观看| 亚洲国产精品嫩草影院| 亚洲精品成a人| 亚洲视频一二三| 亚洲一区二区不卡免费| 亚洲精品亚洲人成人网| 亚洲视频网在线直播| 亚洲精品久久7777| 亚洲婷婷在线视频| 亚洲欧美日韩一区二区三区在线观看| 国产精品毛片高清在线完整版| 国产日韩欧美精品在线| 国产丝袜在线精品| 亚洲欧美国产三级| 亚洲成av人**亚洲成av**| 五月婷婷欧美视频| 国产一区二区福利视频| 99re成人精品视频| 在线观看日韩电影| 日韩一区二区三区免费观看| 久久综合资源网| 亚洲天堂久久久久久久| 亚洲国产综合在线| 国产精品一区一区| 日本韩国一区二区| 久久婷婷色综合| 香蕉久久一区二区不卡无毒影院 | 久久综合九色综合欧美98| 最近中文字幕一区二区三区|