亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme.post

?? U-boot源碼 ARM7啟動代碼
?? POST
?? 第 1 頁 / 共 2 頁
字號:
		"Watchdog timer test", "watchdog", \		"  This test checks the watchdog timer.", \		POST_RAM | POST_POWERON | POST_REBOOT, \		&watchdog_post_test \	}......int watchdog_post_test(bd_t *bd, int flags){	unsigned long start_time;	if (flags & POST_REBOOT) {		/* Test passed */		return 0;	} else {		/* disable interrupts */		disable_interrupts();		/* 10-second delay */		...		/* if we've reached this, the watchdog timer does not work */		enable_interrupts();		return 1;	}}...2.2. Hardware-specific detailsThis project will also develop a set of POST tests for MPC8xx- basedsystems. This section provides technical details of how it will bedone.2.2.1. Generic PPC testsThe following generic POST tests will be developed:  o) CPU test     This test will check the arithmetic logic unit (ALU) of CPU. The     test will take several milliseconds and will run on normal     booting.  o) Cache test     This test will verify the CPU cache (L1 cache). The test will     run on normal booting.  o) Memory test     This test will examine RAM and check it for errors. The test     will always run on booting. On normal booting, only a limited     amount of RAM will be checked. On power-fail booting a fool     memory check-up will be performed.2.2.1.1. CPU testThis test will verify the following ALU instructions:  o) Condition register istructions     This group will contain: mtcrf, mfcr, mcrxr, crand, crandc,     cror, crorc, crxor, crnand, crnor, creqv, mcrf.     The mtcrf/mfcr instructions will be tested by loading different     values into the condition register (mtcrf), moving its value to     a general-purpose register (mfcr) and comparing this value with     the expected one. The mcrxr instruction will be tested by     loading a fixed value into the XER register (mtspr), moving XER     value to the condition register (mcrxr), moving it to a     general-purpose register (mfcr) and comparing the value of this     register with the expected one. The rest of instructions will be     tested by loading a fixed value into the condition register     (mtcrf), executing each instruction several times to modify all     4-bit condition fields, moving the value of the conditional     register to a general-purpose register (mfcr) and comparing it     with the expected one.  o) Integer compare instructions     This group will contain: cmp, cmpi, cmpl, cmpli.     To verify these instructions the test will run them with     different combinations of operands, read the condition register     value and compare it with the expected one. More specifically,     the test will contain a pre-built table containing the     description of each test case: the instruction, the values of     the operands, the condition field to save the result in and the     expected result.  o) Arithmetic instructions     This group will contain: add, addc, adde, addme, addze, subf,     subfc, subfe, subme, subze, mullw, mulhw, mulhwu, divw, divwu,     extsb, extsh.     The test will contain a pre-built table of instructions,     operands, expected results and expected states of the condition     register. For each table entry, the test will cyclically use     different sets of operand registers and result registers. For     example, for instructions that use 3 registers on the first     iteration r0/r1 will be used as operands and r2 for result. On     the second iteration, r1/r2 will be used as operands and r3 as     for result and so on. This will enable to verify all     general-purpose registers.  o) Logic instructions     This group will contain: and, andc, andi, andis, or, orc, ori,     oris, xor, xori, xoris, nand, nor, neg, eqv, cntlzw.     The test scheme will be identical to that from the previous     point.  o) Shift instructions     This group will contain: slw, srw, sraw, srawi, rlwinm, rlwnm,     rlwimi     The test scheme will be identical to that from the previous     point.  o) Branch instructions     This group will contain: b, bl, bc.     The first 2 instructions (b, bl) will be verified by jumping to     a fixed address and checking whether control was transfered to     that very point. For the bl instruction the value of the link     register will be checked as well (using mfspr). To verify the bc     instruction various combinations of the BI/BO fields, the CTR     and the condition register values will be checked. The list of     such combinations will be pre-built and linked in U-Boot at     build time.  o) Load/store instructions     This group will contain: lbz(x)(u), lhz(x)(u), lha(x)(u),     lwz(x)(u), stb(x)(u), sth(x)(u), stw(x)(u).     All operations will be performed on a 16-byte array. The array     will be 4-byte aligned. The base register will point to offset     8. The immediate offset (index register) will range in [-8 ...     +7]. The test cases will be composed so that they will not cause     alignment exceptions. The test will contain a pre-built table     describing all test cases. For store instructions, the table     entry will contain: the instruction opcode, the value of the     index register and the value of the source register. After     executing the instruction, the test will verify the contents of     the array and the value of the base register (it must change for     "store with update" instructions). For load instructions, the     table entry will contain: the instruction opcode, the array     contents, the value of the index register and the expected value     of the destination register. After executing the instruction,     the test will verify the value of the destination register and     the value of the base register (it must change for "load with     update" instructions).  o) Load/store multiple/string instructionsThe CPU test will run in RAM in order to allow run-time modificationof the code to reduce the memory footprint.2.2.1.2 Special-Purpose Registers TestsTBD.2.2.1.3. Cache testTo verify the data cache operation the following test scenarios willbe used:  1) Basic test #1    - turn on the data cache    - switch the data cache to write-back or write-through mode    - invalidate the data cache    - write the negative pattern to a cached area    - read the area    The negative pattern must be read at the last step  2) Basic test #2    - turn on the data cache    - switch the data cache to write-back or write-through mode    - invalidate the data cache    - write the zero pattern to a cached area    - turn off the data cache    - write the negative pattern to the area    - turn on the data cache    - read the area    The negative pattern must be read at the last step  3) Write-through mode test    - turn on the data cache    - switch the data cache to write-through mode    - invalidate the data cache    - write the zero pattern to a cached area    - flush the data cache    - write the negative pattern to the area    - turn off the data cache    - read the area    The negative pattern must be read at the last step  4) Write-back mode test    - turn on the data cache    - switch the data cache to write-back mode    - invalidate the data cache    - write the negative pattern to a cached area    - flush the data cache    - write the zero pattern to the area    - invalidate the data cache    - read the area    The negative pattern must be read at the last stepTo verify the instruction cache operation the following testscenarios will be used:  1) Basic test #1    - turn on the instruction cache    - unlock the entire instruction cache    - invalidate the instruction cache    - lock a branch instruction in the instruction cache    - replace the branch instruction with "nop"    - jump to the branch instruction    - check that the branch instruction was executed  2) Basic test #2    - turn on the instruction cache    - unlock the entire instruction cache    - invalidate the instruction cache    - jump to a branch instruction    - check that the branch instruction was executed    - replace the branch instruction with "nop"    - invalidate the instruction cache    - jump to the branch instruction    - check that the "nop" instruction was executedThe CPU test will run in RAM in order to allow run-time modificationof the code.2.2.1.4. Memory testThe memory test will verify RAM using sequential writes and readsto/from RAM. Specifically, there will be several test cases that willuse different patterns to verify RAM. Each test case will first filla region of RAM with one pattern and then read the region back andcompare its contents with the pattern. The following patterns will beused: 1) zero pattern (0x00000000) 2) negative pattern (0xffffffff) 3) checkerboard pattern (0x55555555, 0xaaaaaaaa) 4) bit-flip pattern ((1 << (offset % 32)), ~(1 << (offset % 32))) 5) address pattern (offset, ~offset)Patterns #1, #2 will help to find unstable bits. Patterns #3, #4 willbe used to detect adherent bits, i.e. bits whose state may randomlychange if adjacent bits are modified. The last pattern will be usedto detect far-located errors, i.e. situations when writing to onelocation modifies an area located far from it. Also, usage of thelast pattern will help to detect memory controller misconfigurationswhen RAM represents a cyclically repeated portion of a smaller size.Being run in normal mode, the test will verify only small 4Kb regionsof RAM around each 1Mb boundary. For example, for 64Mb RAM thefollowing areas will be verified: 0x00000000-0x00000800,0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-0x04000000. If the test is run in power-fail mode, it will verify thewhole RAM.The memory test will run in ROM before relocating U-Boot to RAM inorder to allow RAM modification without saving its contents.2.2.2. Common testsThis section describes tests that are not based on any hardwarepeculiarities and use common U-Boot interfaces only. These tests donot need any modifications for porting them to another board/CPU.2.2.2.1. I2C testFor verifying the I2C bus, a full I2C bus scanning will be performedusing the i2c_probe() routine. If any I2C device is found, the testwill be considered as passed, otherwise failed. This particular waywill be used because it provides the most common method of testing.For example, using the internal loopback mode of the CPM I2Ccontroller for testing would not work on boards where the softwareI2C driver (also known as bit-banged driver) is used.2.2.2.2. Watchdog timer testTo test the watchdog timer the scheme mentioned above (refer tosection "Hazardous tests") will be used. Namely, this test will bemarked with the POST_REBOOT bit flag. On the first iteration, thetest routine will make a 10-second delay. If the system does notreboot during this delay, the watchdog timer is not operational andthe test fails. If the system reboots, on the second iteration thePOST_REBOOT bit will be set in the flag argument to the test routine.The test routine will check this bit and report a success if it isset.2.2.2.3. RTC testThe RTC test will use the rtc_get()/rtc_set() routines. The followingfeatures will be verified:  o) Time uniformity     This will be verified by reading RTC in polling within a short     period of time (5-10 seconds).  o) Passing month boundaries     This will be checked by setting RTC to a second before a month     boundary and reading it after its passing the boundary. The test     will be performed for both leap- and nonleap-years.2.2.3. MPC8xx peripherals testsThis project will develop a set of tests verifying the peripheralunits of MPC8xx processors. Namely, the following controllers of theMPC8xx communication processor module (CPM) will be tested:  o) Serial Management Controllers (SMC)  o) Serial Communication Controllers (SCC)2.2.3.1. Ethernet tests (SCC)The internal (local) loopback mode will be used to test SCC. To dothat the controllers will be configured accordingly and severalpackets will be transmitted. These tests may be enhanced in future touse external loopback for testing. That will need appropriatereconfiguration of the physical interface chip.The test routines for the SCC ethernet tests will be located incpu/mpc8xx/scc.c.2.2.3.2. UART tests (SMC/SCC)To perform these tests the internal (local) loopback mode will beused. The SMC/SCC controllers will be configured to connect thetransmitter output to the receiver input. After that, several byteswill be transmitted. These tests may be enhanced to make to perform"external" loopback test using a loopback cable. In this case, thetest will be executed manually.The test routine for the SMC/SCC UART tests will be located incpu/mpc8xx/serial.c.2.2.3.3. USB testTBD2.2.3.4. SPI testTBD

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产cao| 一区二区高清视频在线观看| 欧美性极品少妇| 91麻豆蜜桃一区二区三区| 国产精品综合一区二区三区| 国产精品2024| 成人深夜福利app| 91视频91自| 欧美专区亚洲专区| 51精品国自产在线| 精品日韩一区二区三区免费视频| 日韩美女一区二区三区| 欧美videos中文字幕| 久久天堂av综合合色蜜桃网 | 国产精品美女久久久久久2018| 欧美mv和日韩mv的网站| 久久婷婷国产综合国色天香| 亚洲国产激情av| 亚洲精品乱码久久久久| 日韩综合小视频| 国内外成人在线视频| 成人综合婷婷国产精品久久| 日本精品一区二区三区四区的功能| 欧美日韩一区久久| 国产午夜亚洲精品午夜鲁丝片| 综合久久综合久久| 日本三级韩国三级欧美三级| 国产成人高清视频| 欧美日韩日本视频| 中文字幕精品在线不卡| 一区二区三区产品免费精品久久75| 香蕉成人伊视频在线观看| 国产精品99久久久久久宅男| 91福利在线观看| 精品国产乱码久久久久久老虎 | 日本欧美在线看| 韩国女主播成人在线| 91日韩在线专区| 日韩午夜在线观看| 中文字幕一区视频| 久久99精品久久只有精品| 一本色道综合亚洲| 久久亚洲影视婷婷| 爽爽淫人综合网网站| 成人性生交大片免费看在线播放| 欧美色网一区二区| 国产精品久久久久久福利一牛影视 | 久久不见久久见中文字幕免费| 成人精品视频一区二区三区 | 黄一区二区三区| 欧美影片第一页| 国产精品三级av在线播放| 日本亚洲免费观看| 欧美亚洲动漫另类| 国产精品看片你懂得| 国产一二三精品| 精品卡一卡二卡三卡四在线| 亚洲成av人片在线观看无码| 91影院在线观看| 国产亚洲一本大道中文在线| 久久精品国产精品亚洲精品| 欧美乱熟臀69xxxxxx| 国产精品国产三级国产aⅴ入口| 激情小说欧美图片| 精品久久久久99| 久久99蜜桃精品| 日韩视频中午一区| 男女视频一区二区| 欧美一区二区播放| 蜜臀va亚洲va欧美va天堂| 欧美日韩精品久久久| 亚洲图片激情小说| a级精品国产片在线观看| 国产丝袜欧美中文另类| 国内精品视频666| 国产亚洲制服色| 成人免费视频免费观看| 国产欧美日韩不卡免费| 成人性生交大片免费看视频在线 | 亚洲欧洲国产日韩| 不卡视频在线看| 成人欧美一区二区三区白人| 成人aaaa免费全部观看| 亚洲三级在线播放| 在线免费亚洲电影| 青娱乐精品视频在线| 亚洲精品一线二线三线无人区| 国产一区福利在线| 国产精品三级久久久久三级| 一本色道综合亚洲| 日本欧美久久久久免费播放网| 欧美mv和日韩mv的网站| 国产成人h网站| 亚洲精品视频一区二区| 91麻豆精品国产91久久久资源速度| 亚洲国产成人av网| 久久一区二区三区四区| 国产suv精品一区二区883| 亚洲日本在线视频观看| 91九色02白丝porn| 青青国产91久久久久久| 欧美国产在线观看| 欧美图区在线视频| 国产一区二区三区黄视频| 中文字幕一区视频| 日韩精品自拍偷拍| 99re6这里只有精品视频在线观看| 亚洲午夜影视影院在线观看| 日韩精品一区二区三区四区| 成人99免费视频| 免费在线观看精品| 亚洲色图清纯唯美| 欧美精品一区二区蜜臀亚洲| 91福利国产精品| 国产一区二区三区久久久| 一卡二卡欧美日韩| 久久久另类综合| 精品视频在线免费看| 国内精品伊人久久久久av影院| 亚洲欧洲www| 精品国产一区二区国模嫣然| 欧美午夜宅男影院| 成人黄色综合网站| 久久99精品视频| 五月婷婷久久丁香| 亚洲免费资源在线播放| 久久青草国产手机看片福利盒子| 欧美日韩国产综合一区二区三区| 国产白丝网站精品污在线入口 | 26uuu久久综合| 欧美日韩中文字幕一区二区| av电影在线观看一区| 国产在线精品不卡| 日韩国产欧美在线观看| 亚洲一二三四区不卡| 国产精品成人在线观看| 国产日产欧产精品推荐色| 欧美tickling网站挠脚心| 欧美日韩精品久久久| 在线一区二区三区四区| 不卡影院免费观看| 国产成人高清视频| 国产91丝袜在线18| 懂色中文一区二区在线播放| 国产一区二区三区最好精华液| 美国三级日本三级久久99| 亚洲精品国产品国语在线app| 久久狠狠亚洲综合| 亚洲国产成人精品视频| 夜夜操天天操亚洲| 一区二区三区在线观看动漫| 亚洲欧洲制服丝袜| 亚洲女同ⅹxx女同tv| 亚洲桃色在线一区| 一区二区在线观看av| 亚洲靠逼com| 亚洲精品菠萝久久久久久久| 日韩伦理免费电影| 亚洲欧美日韩国产综合| 亚洲天堂久久久久久久| 一区二区三区久久| 丝袜美腿亚洲一区二区图片| 天天综合色天天综合色h| 日韩激情视频在线观看| 欧美aaaaa成人免费观看视频| 欧美aaaaaa午夜精品| 国产一区999| 99r国产精品| 欧美中文字幕亚洲一区二区va在线 | 在线观看视频一区二区| 欧美午夜电影一区| 欧美一区二区三区婷婷月色| 欧美成人精品福利| 中文字幕精品一区二区精品绿巨人 | 欧美综合天天夜夜久久| 欧美性受极品xxxx喷水| 日韩欧美国产电影| 国产欧美一二三区| 亚洲一区二区三区四区不卡| 美女网站一区二区| 国产99久久久国产精品免费看 | 免费成人你懂的| 国产麻豆日韩欧美久久| 色综合中文字幕国产| 日本二三区不卡| 日韩欧美一区二区三区在线| 国产精品美女久久久久久久久久久 | 久久久久国产精品麻豆ai换脸| 国产精品麻豆视频| 日本欧美一区二区| 国产不卡免费视频| 欧美日韩小视频| 国产精品久久三区| 天天影视网天天综合色在线播放| 国产一区二区三区香蕉| 欧美午夜精品一区二区蜜桃| 国产亚洲一区二区三区四区 | 91精品国产综合久久久久久| 久久久国际精品| 日韩中文字幕不卡|