亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper5

?? Best algorithm for LZW ..C language
??
字號:
.pn 0.EQdelim $$define RR 'bold R'define SS 'bold S'define II 'bold I'define mo '"\(mo"'define EXIST ?"\z\-\d\z\-\r\-\d\v'0.2m'\(br\v'-0.2m'"?define NEXIST ?"\z\-\d\z\o'\-\(sl'\r\-\d\v'0.2m'\(br\v'-0.2m'"?define ALL ?"\o'V-'"?define subset '\(sb'define subeq  '\(ib'define supset '\(sp'define supeq  '\(ip'define mo '\(mo'define nm ?"\o'\(mo\(sl'"?define li '\& sup ['define lo '\& sup ('define hi '\& sup ]'define ho '\& sup )'.EN.ls 1	.ceA LOGICAL IMPLEMENTATION OF ARITHMETIC .sp 3.ceJohn G. Cleary .ceThe University of Calgary, Alberta, Canada..sp 20\u1\dAuthor's Present Address: Man-Machine Systems Group, Department ofComputer Science, The University of Calgary, 2500 University Drive NWCalgary, Canada T2N 1N4. Phone: (403)220-6087.  .br.nfUUCP:  ...!{ihnp4,ubc-vision}!alberta!calgary!cleary       ...!nrl-css!calgary!clearyARPA:  cleary.calgary.ubc@csnet-relayCDN:   cleary@calgary.fi.sp 2.ls 2.bp 0.ls 2.ceAbstract.ppSo far implementations of real arithmetic within logic programminghave been non-logical.  A logical description of the behaviour of arithmeticon actualmachines using finite precision numbers is not readily available.  Using interval analysis a simple description of real arithmetic is possible.This can be translated to an implementation within Prolog.As well as having a sound logical basis the resulting system allows a very concise and powerful programming style and is potentiallyvery efficient..bp.sh "1 Introduction".ppLogic programming aims to use sets of logical formulae asstatements in a programming language.Because of many practical difficulties the full generality of logiccannot (yet) be used in this way.   However, by restricting theclass of formulae used to Horn clauses practical and efficientlanguages such as PROLOG are obtained.One of the main problems in logic programming is to extend this areaof practicality and efficiency to an ever wider range of formulae and applications.  This paper considers such an implementation for arithmetic..ppTo see why arithmetic as it is commonly implemented in PROLOG systemsis not logical consider the following example:.sp.nf	X = 0.67, Y = 0.45, Z is X*Y, Z = 0.30.fi.spThis uses the notation of the 'Edinburgh style' Prologs.(For the moment we assume an underlying floating pointdecimal arithmetic with two significant places.)The predicate 'is' assumes its righthand side is an arithmeticstatement, computes its value, and unifies the result with its lefthand side.In this case the entire sequence succeeds, however, there are some serious problems..ppIn a pure logic program the order of statements should be irrelevant tothe correctness of the result (at worst termination or efficiency might beaffected).  This is not true of the example above.  The direction of executionof 'is' is strictly one way so that.sp	Y = 0.45, Z = 0.30, Z is X*Y.spwill deliver an error when X is found to be uninstantiated inside 'is'..ppThe second problem is that the answer Z = 0.30 is incorrect!\ The correct infinite precision answer is Z = 0.3015.  This inaccuracyis caused by the finite precision implemented in the floating pointarithmetic of modern computers.It becomes very problematic to say what if anything it means whenZ is bound to 0.30 by 'is'.  This problem is exacerbated by long sequencesof arithmetic operations where the propagation of such errors can lead thefinal result to have little or no resemblence to the correct answer..ppThis is further class of errors, which is illustrated by the fact that thefollowing two sequences will both succeed if the underlying arithmetic rounds:.sp	X = 0.66, Y = 0.45, Z = 0.30, Z is X*Y.br	X = 0.67, Y = 0.45, Z = 0.30, Z is X*Y.spThis means that even if some invertable form of arithmetic were devisedcapable of binding X when:.sp	Y = 0.45, Z = 0.30, Z is X*Y.spit is unclear which value should be given to it..ppThe problem then, is to implement arithmetic in as logical a manneras possible while still making use of efficient floating point arithmetic.The solution to this problem has three major parts.The first is to represent PROLOG's arithmetic variables internally as intervals of real numbers.So the result of 'Z is 0.45*0.67' would be to bind Z to the open interval (0.30,0.31).  This says that Z lies somewhere in the interval$0.30 < Z < 0.31$, which is certainly true, and probably as informativeas possible given finite precision arithmetic.(Note that Z is NOT bound to the data structure (0.30,0.31), thisis a hidden representation in much the same way that pointers are usedto implement logical variables in PROLOG but are not explicitly visibleto the user.  Throughout this paper brackets such as (...) or [...] willbe used to represent open and closed intervals not Prolog data structures.).ppThe second part of the solution is to translate expressions such as\&'Z is (X*Y)/2' to the relational form 'multiply(X,Y,T0), multiply(2,Z,T0)'.Note that both the * and / operators have been translated to 'multiply'(with parameters in a different order).  This relational form will be seen to be insensitive to which parameters are instantiated and which are not,thus providing invertibility..ppThe third part is to provide a small number of control 'predicates' ableto guide the search for solutions.The resulting system is sufficiently powerful to be able tosolve equations such as '0 is X*(X-2)+1' directly..ppThe next section gives a somewhat more formal description of arithmeticimplemented this way.  Section III gives examples of its use and of thetypes of equations that are soluble within it.  Section IV compares our approach here with that of other interval arithmetic systems and withconstraint networks.  Section V notes some possibilities for a parallel dataflow implementation which avoids many of the difficulties of traditionaldataflow execution..sh "II. Interval Representation".ppDefine $II(RR)$ to be the set of intervals over the real numbers, $RR$.So that the lower and upper bounds of each interval can be operated on as single entities they will be treated as pairs of values.  Each value having an attribute of being open or closed and an associated number.  For example the interval (0.31,0.33] will betreated as the the pair $lo 0.31$ and $hi 0.33$.  The brackets are superscripted to minimize visual confusion when writeing bounds not in pairs.As well as the usual real numbers $- inf$ and $inf$, will be used as part of bounds,with the properties that $ALL x mo RR~- inf < x < inf$ The set of all upper bounds is defined as:.sp	$H(RR)~==~\{ x sup b : x mo RR union \{ inf \},~b mo \{ hi , ho \} \} $.spand the set of lower bounds as:.sp	$L(RR)~==~\{ \& sup b x : x mo RR union \{ -inf \},~b mo \{ li , lo \} \} $.spThe set of all intervals is then defined by:.sp	$II(RR)~==~L(RR) times H(RR)$.spUsing this notation rather loosely intervals will be identified with the apropriate subset of the reals.  For example the following identifications will be made:.sp	$[0.31,15)~=~< li 0.31, ho 15 >~=~ \{ x mo RR: 0.31 <= x < 15 \}$.br	$[-inf,inf]~=~< li -inf , hi inf> ~=~ RR$.brand	$(-0.51,inf]~=~< lo -0.51 , hi inf >~=~ \{ x mo RR: 0.51 < x \}$.spThe definition above carefully excludes 'intervals' such as $[inf,inf]$in the interests of simplifying some of the later development..ppThe finite arithmetic available on computers is represented by afinite subset, $SS$, of $RR$.  It is assumed that $0,1 mo SS$.  The set of intervals allowed over $SS$ is $II(SS)$ defined as above for $RR$.  $SS$ might be a bounded set of integers or some more complexset representable by floating point numbers..ppThere is a useful mapping from $II(RR)$ to $II(SS)$ which associateswith each real interval the best approximation to it:.nf.sp	$approx(<l,h>)~==~<l prime, h prime >$.brwhere	$l prime mo L(SS), l prime <= l, and NEXIST x mo L(SS)~l prime <x<l$.br	$h prime mo H(SS), h prime >= h, and NEXIST x mo H(SS)~h prime >x>h$..ppThe ordering on the bounds is defined as follows:.sp	$l < h, ~ l,h mo II(RR)~ <->~l= \& sup u x and h = \& sup v y$			and $x<y$ or $x=y$ and $u<v$where 	$ ho, li, hi, lo$ occur in this order and $x<y$ is the usual ordering on the reals extended to include $-inf$ and $inf$.  The ordering on the brackets is carefully chosen so that intervals such as(3.1,3.1) map to the empty set.Given this definition it is easily verified that 'approx' givesthe smallest interval in $II(SS)$ enclosing the original interval in $II(RR)$.The definition also allows the intersection of two intervals to be readily computed:.sp	$<l sub 1,h sub 1> inter <l sub 2, h sub 2>~=~$		$< max(l sub 1 , l sub 2), min(h sub 1 , h sub 2 )>$.spAlso and interval $<l,h>$ will be empty if $l > h$.  For example, accordingto the definition above $lo 3.1 > ho 3.1$ so (3.1,3.1) is correctly computedas being empty..ppIntervals are introduced into logic by extending the notion of unification.  A logical variable I can be bound to an interval $I$,written I:$I$.  Unification of I to any other value J gives the followingresults:.LB.NPif J is unbound then it is bound to the interval, J:$I$;.NPif J is bound to the interval J:$J$ thenI and J are bound to the same interval $I inter J$.The unification fails if $I inter J$ is empty..NPa constant C is equivalent to $approx([C,C])$;.NPif J is bound to anything other than an interval the unification fails..LE.ppBelow are some simple Prolog programs and the bindings that result whenthey are run (assuming as usual two decimal places of accuracy)..sp.nf	X = 3.141592	X:(3.1,3.2)	X > -5.22, Y <= 31, X=Y	X:(-5.3,32]  Y:(-5.3,31].fi.sp.rh "Addition".ppAddition is implemented by the relation 'add(I,J,K)'which says that K is the sum of I and J.\&'add' can be viewed as a relation on $RR times RR times RR$ definedby:.sp	$add ~==~ \{<x,y,z>:x,y,z mo  RR,~x+y=z\}$.spGiven that I,J, and K are initially bound to the intervals $I,J,K$ respectively, the fully correct set of solutions with the additionalconstrain 'add(I,J,K)' is given by all triples in the set $add inter I times J times K$.  This set is however infinite, to get an effectively computable procedureI will approximate the additional constraint by binding I, J and Kto smaller intervals.  So as not to exclude any possible triples the new bindings, $I prime, J prime roman ~and~ K prime$ must obey:.sp	$add inter I times J times K ~subeq~ I prime times J prime times K prime$.spFigure 1 illustrates this process of.ulnarrowing.The initial bindings are I:[0,2], J:[1,3]and K:[4,6].  After applying 'add(I,J,K)' the smallest possible bindingsare I:[1,2], J:[2,3] and K:[4,5].  Note that all three intervals have beennarrowed..ppIt can easily be seen that:.sp	$I prime supeq \{x:<x,y,z> ~mo~ add inter I times J times K \}$.br	$J prime supeq \{y:<x,y,z> ~mo~ add inter I times J times K \}$.br	$K prime supeq \{z:<x,y,z> ~mo~ add inter I times J times K \}$.spIf there are 'holes' in the projected set then $I prime$ will be a strictsuperset of the projection, however, $I prime$ will still be uniquely determined by the projection.  This will be true of anysubset of $RR sup n$ not just $add$..ppIn general for.sp	$R subeq RR sup n,~ I sub 1 , I sub 2 , ... , I sub n mo II(RR)$and $I prime  sub 1 , I prime  sub 2 , ... , I prime  sub n mo II(RR)$.spI will write .br	$R inter I sub 1 times I sub 2 times ... times I sub n nar I prime sub 1 times I prime sub 2 times ... times I prime sub $.br when the intervals $I prime sub 1 , I prime sub 2 , ... , I prime sub $are the uniquelly determined smallest intervals including all solutions..sh "IV. Comparison with Interval Arithmetic".pp.sh "V.  Implementation".pp.sh "VI. Summary".sh "Acknowledgements".sh "References".ls 1.[$LIST$.]

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
极品美女销魂一区二区三区 | 欧美高清视频不卡网| 美国av一区二区| 亚洲天天做日日做天天谢日日欢 | 国产精品国产自产拍在线| 欧美日韩久久久| 不卡av在线免费观看| 蜜臀国产一区二区三区在线播放| 亚洲欧洲一区二区在线播放| 欧美岛国在线观看| 欧美四级电影网| 北岛玲一区二区三区四区| 男人操女人的视频在线观看欧美| 亚洲精选在线视频| 国产欧美精品日韩区二区麻豆天美| 欧美精品1区2区3区| 色综合网站在线| 国产91精品一区二区| 久久精品国产色蜜蜜麻豆| 一区二区三区成人在线视频| 国产精品毛片大码女人| 久久色在线观看| 日韩欧美国产综合一区| 欧美精品日韩一区| 欧美亚洲一区三区| 91老师片黄在线观看| 成人av第一页| 成人精品一区二区三区四区 | 久久色.com| 日韩视频一区二区三区| 欧美女孩性生活视频| 在线视频欧美精品| 99精品偷自拍| 91视频国产观看| 91视视频在线观看入口直接观看www | 欧美精品在线观看播放| 欧美少妇一区二区| 欧美色中文字幕| 欧美午夜一区二区三区免费大片| 日韩av电影免费观看高清完整版在线观看 | 国产**成人网毛片九色| 国产成人日日夜夜| 成人免费看视频| 成人av电影在线| 91片在线免费观看| 在线观看精品一区| 欧美精选一区二区| 日韩一区二区免费视频| 日韩精品一区二区三区视频| 久久这里都是精品| 国产肉丝袜一区二区| 一区在线观看免费| 亚洲另类在线制服丝袜| 午夜私人影院久久久久| 喷白浆一区二区| 国产麻豆一精品一av一免费 | 在线观看国产91| 欧美精品在线观看一区二区| 日韩免费视频一区二区| 国产亚洲综合在线| 一色屋精品亚洲香蕉网站| 亚洲一区二区三区四区在线观看| 日本不卡视频在线观看| 国产一区二区三区在线观看免费 | 在线一区二区三区做爰视频网站| 欧美私人免费视频| 精品裸体舞一区二区三区| 久久久噜噜噜久久人人看| 综合婷婷亚洲小说| 亚洲成a人片在线不卡一二三区| 天天综合天天综合色| 国产美女在线精品| 日本久久精品电影| 欧美大片拔萝卜| 国产精品国产三级国产三级人妇| 亚洲影院久久精品| 激情欧美一区二区| 色婷婷综合久久久久中文 | 亚洲精品中文在线影院| 水野朝阳av一区二区三区| 国产主播一区二区三区| 99精品欧美一区二区三区小说| 欧美日韩一区精品| 久久久久99精品国产片| 亚洲国产欧美一区二区三区丁香婷 | 亚洲在线成人精品| 国产精品一区三区| 欧美日韩精品一区视频| 国产日韩欧美精品一区| 丝瓜av网站精品一区二区| 成人性生交大片免费看中文| 欧美男同性恋视频网站| 国产精品卡一卡二| 奇米精品一区二区三区在线观看 | 欧美日韩一区二区欧美激情| 国产午夜三级一区二区三| 亚洲成人综合网站| 不卡视频一二三四| 欧美α欧美αv大片| 伊人开心综合网| 国产成人精品免费在线| 91麻豆精品国产91久久久久久久久| 国产色产综合色产在线视频| 日韩影院免费视频| 色婷婷亚洲精品| 久久亚洲二区三区| 奇米亚洲午夜久久精品| 欧洲一区二区三区免费视频| 国产无一区二区| 精品一区二区三区免费观看 | 国产精品婷婷午夜在线观看| 免费成人在线观看视频| 欧美优质美女网站| 亚洲丝袜美腿综合| 国产91精品精华液一区二区三区 | 久久久国产精华| 日本午夜一本久久久综合| 欧美在线观看你懂的| 亚洲欧美日韩在线播放| 成人av电影在线网| 国产精品婷婷午夜在线观看| 国产精品一区二区三区99| 欧美成人aa大片| 美腿丝袜亚洲三区| 欧美一区二区久久久| 亚洲高清免费一级二级三级| 色综合中文字幕国产| 中文成人av在线| 成人午夜碰碰视频| 国产欧美一区二区精品婷婷| 紧缚奴在线一区二区三区| 日韩一级欧美一级| 美腿丝袜一区二区三区| 欧美大肚乱孕交hd孕妇| 久久精品国产**网站演员| 日韩视频免费直播| 老司机免费视频一区二区三区| 91精品欧美综合在线观看最新| 亚洲成人午夜影院| 欧美高清视频一二三区 | 伊人婷婷欧美激情| 欧美性极品少妇| 日韩精品一二区| 欧美videos大乳护士334| 六月婷婷色综合| 久久精品在线免费观看| 成年人午夜久久久| 亚洲欧美一区二区不卡| 欧美性极品少妇| 青青草国产精品亚洲专区无| 精品国一区二区三区| 国产精品一区在线| 亚洲欧洲性图库| 色狠狠色狠狠综合| 亚洲va韩国va欧美va| 日韩精品一区二| 国产成人无遮挡在线视频| 亚洲三级在线免费| 欧美日韩午夜精品| 久久精品国产澳门| 国产精品热久久久久夜色精品三区 | 亚洲欧洲日韩在线| 欧美日韩一区二区三区四区五区| 日精品一区二区三区| 精品捆绑美女sm三区| 成人午夜激情影院| 亚洲国产cao| 亚洲精品一区在线观看| 99久久久无码国产精品| 亚洲成人7777| 国产欧美日韩亚州综合 | 国内一区二区在线| 亚洲色图欧洲色图婷婷| 欧美一级艳片视频免费观看| 国产综合久久久久久鬼色| 亚洲毛片av在线| 欧美大度的电影原声| 91麻豆精品在线观看| 日本va欧美va欧美va精品| 国产精品系列在线| 7777精品久久久大香线蕉| 国产不卡视频一区| 亚洲成人一区二区在线观看| 欧美国产精品久久| 4438成人网| www.激情成人| 麻豆成人av在线| 一区二区三区不卡视频| 久久久国产综合精品女国产盗摄| 欧美系列亚洲系列| 成人性生交大片免费看中文 | 色婷婷久久一区二区三区麻豆| 看片的网站亚洲| 亚洲黄色免费电影| 久久久高清一区二区三区| 欧美丰满高潮xxxx喷水动漫| 成人黄色777网| 狠狠色狠狠色综合系列| 亚洲国产毛片aaaaa无费看 | 成人18精品视频|