亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper1

?? Best algorithm for LZW ..C language
??
?? 第 1 頁 / 共 4 頁
字號:
.pn 0.ls1.EQdelim $$.EN.ev1.ps-2.vs-2.ev\&.sp 5.ps+4.ceARITHMETIC CODING FOR DATA COMPRESSION.ps-4.sp4.ceIan H. Witten, Radford M. Neal, and John G. Cleary.sp2.ce4Department of Computer ScienceThe University of Calgary2500 University Drive NWCalgary, Canada T2N 1N4.sp2.ceAugust, 1986, revised January 1987.sp 8.in+1i.ll-1iThe state of the art in data compression is arithmetic coding, notthe better-known Huffman method.Arithmetic coding gives greater compression, is faster for adaptive models,and clearly separates the model from the channel encoding.This paper presents a practical implementation of the technique..sp 3.in +0.5i.ti -0.5i\fICR Categories and subject descriptors:\fR.brE.4 [DATA] Coding and Information Theory \(em Data Compaction and Compression.brH.1.1 [Models and Principles] Systems and Information Theory \(em Information Theory.sp.ti -0.5i\fIGeneral terms:\fR  algorithms, performance.sp.ti -0.5i\fIAdditional key words and phrases:\fR  arithmetic coding, Huffman coding, adaptive modeling.ll+1i.in 0.bp.sh "Introduction".ppArithmetic coding is superior in most respects to the better-known Huffman(1952) method..[Huffman 1952 method construction minimum-redundancy codes.]It represents information at least as compactly, sometimes considerably moreso.Its performance is optimal without the need for blocking of input data.It encourages a clear separation between the model for representing data andthe encoding of information with respect to that model.It accommodates adaptive models easily.It is computationally efficient.Yet many authors and practitioners seem unaware of the technique.Indeed there is a widespread belief that Huffman coding cannot be improvedupon..ppThis paper aims to rectify the situation by presenting an accessibleimplementation of arithmetic coding, and detailing its performancecharacteristics.The next section briefly reviews basic concepts of data compression andintroduces the model-based approach which underlies most modern techniques.We then outline the idea of arithmetic coding using a simple example.Following that programs are presented for both encoding and decoding, in whichthe model occupies a separate module so that different ones can easily beused.Next we discuss the construction of fixed and adaptive models.The subsequent section details the compression efficiency and execution timeof the programs, including the effect of different arithmetic word lengths oncompression efficiency.Finally, we outline a few applications where arithmetic coding is appropriate..sh "Data compression".ppTo many, data compression conjures up an assortment of \fIad hoc\fRtechniques such as converting spaces in text to tabs, creating special codesfor common words, or run-length coding of picture data (eg see Held, 1984)..[Held 1984 data compression techniques applications.]This contrasts with the more modern model-based paradigm forcoding, where from an \fIinput string\fR of symbols and a \fImodel\fR, an\fIencoded string\fR is produced which is (usually) a compressed version ofthe input.The decoder, which must have access to the same model,regenerates the exact input string from the encoded string.Input symbols are drawn from some well-defined set such as the ASCII orbinary alphabets;the encoded string is a plain sequence of bits.The model is a way of calculating, in any given context, the distribution ofprobabilities for the next input symbol.It must be possible for the decoder to produce exactly the same probabilitydistribution in the same context.Compression is achieved by transmitting the more probable symbols in fewerbits than the less probable ones..ppFor example, the model may assign a predetermined probability to each symbolin the ASCII alphabet.No context is involved.These probabilities may be determined by counting frequencies inrepresentative samples of text to be transmitted.Such a \fIfixed\fR model is communicated in advance to both encoder anddecoder, after which it is used for many messages..ppAlternatively, the probabilities the model assigns may change as each symbolis transmitted, based on the symbol frequencies seen \fIso far\fR in thismessage.This is an \fIadaptive\fR model.There is no need for a representative sample of text, because each messageis treated as an independent unit, starting from scratch.The encoder's model changes with each symbol transmitted, and the decoder'schanges with each symbol received, in sympathy..ppMore complex models can provide more accurate probabilistic predictions andhence achieve greater compression.For example, several characters of previous context could condition thenext-symbol probability.Such methods have enabled mixed-case English text to be encoded in around2.2\ bit/char with two quite different kinds of model.(Cleary & Witten, 1984b; Cormack & Horspool, 1985)..[Cleary Witten 1984 data compression%D 1984b.].[Cormack Horspool 1985 dynamic Markov%O April.]Techniques which do not separate modeling from coding so distinctly, likethat of Ziv & Lempel (1978), do not seem to show such great potential forcompression, although they may be appropriate when the aim is raw speed ratherthan compression performance (Welch, 1984)..[Ziv Lempel 1978 compression of individual sequences.].[Welch 1984 data compression.].ppThe effectiveness of any model can be measured by the \fIentropy\fR of themessage with respect to it, usually expressed in bits/symbol.Shannon's fundamental theorem of coding states that given messages randomlygenerated from a model, it is impossible to encode them into less bits(on average) than the entropy of that model (Shannon & Weaver, 1949)..[Shannon Weaver 1949.].ppA message can be coded with respect to a model using either Huffman orarithmetic coding.The former method is frequently advocated as the best possible technique forreducing the encoded data rate.But it is not.Given that each symbol in the alphabet must translate into an integral numberof bits in the encoding, Huffman coding indeed achieves ``minimumredundancy''.In other words, it performs optimally if all symbol probabilities areintegral powers of 1/2.But this is not normally the case in practice;indeed, Huffman coding can take up to one extra bit per symbol.The worst case is realized by a source in which one symbol has probabilityapproaching unity.Symbols emanating from such a source convey negligible information on average,but require at least one bit to transmit (Gallagher, 1978)..[Gallagher 1978 variations on a theme by Huffman.]Arithmetic coding dispenses with the restriction that each symbol translatesinto an integral number of bits, thereby coding more efficiently.It actually achieves the theoretical entropy bound to compression efficiencyfor any source, including the one just mentioned..ppIn general, sophisticated models expose the deficiencies of Huffman codingmore starkly than simple ones.This is because they more often predict symbols with probabilities close toone, the worst case for Huffman coding.For example, the techniques mentioned above which code English text in2.2\ bit/char both use arithmetic coding as the final step, and performancewould be impacted severely if Huffman coding were substituted.Nevertheless, since our topic is coding and not modeling, the illustrations inthis paper all employ simple models.Even then, as we shall see, Huffman coding is inferior to arithmetic coding..ppThe basic concept of arithmetic coding can be traced back to Elias in theearly 1960s (see Abramson, 1963, pp 61-62)..[Abramson 1963.]Practical techniques were first introduced by Rissanen (1976) andPasco (1976), and developed further in Rissanen (1979)..[Rissanen 1976 Generalized Kraft Inequality.].[Pasco 1976.].[Rissanen 1979 number representations.].[Langdon 1981 tutorial arithmetic coding.]Details of the implementation presented here have not appeared in theliterature before; Rubin (1979) is closest to our approach..[Rubin 1979 arithmetic stream coding.]The reader interested in the broader class of arithmetic codes is referredto Rissanen & Langdon (1979);.[Rissanen Langdon 1979 Arithmetic coding.]a tutorial is available in Langdon (1981)..[Langdon 1981 tutorial arithmetic coding.]Despite these publications, the method is not widely known.A number of recent books and papers on data compression mention it only inpassing, or not at all..sh "The idea of arithmetic coding".ppIn arithmetic coding a message is represented by aninterval of real numbers between 0 and 1.As the message becomes longer, the interval needed to represent it becomessmaller, and the number of bits needed to specify that interval grows.Successive symbols of the message reduce the size of theinterval in accordance with the symbol probabilities generated by themodel.The more likely symbols reduce the range by less than the unlikely symbols,and hence add fewer bits to the message..ppBefore anything is transmitted, the range for the message is the entireinterval [0,\ 1)\(dg..FN\(dg [0,\ 1) denotes the half-open interval 0\(<=\fIx\fR<1..EFAs each symbol is processed, the range is narrowed to that portion of itallocated to the symbol.For example, suppose the alphabet is {\fIa,\ e,\ i,\ o,\ u,\ !\fR}, and afixed model is used with probabilities shown in Table\ 1.Imagine transmitting the message \fIeaii!\fR.Initially, both encoder and decoder know that the range is [0,\ 1).After seeing the first symbol, \fIe\fR, the encoder narrows it to[0.2,\ 0.5), the range the model allocates to this symbol.The second symbol, \fIa\fR, will narrow this new range to the first 1/5 of it,since \fIa\fR has been allocated [0,\ 0.2).This produces [0.2,\ 0.26) since the previous range was 0.3 units long and1/5 of that is 0.06.The next symbol, \fIi\fR, is allocated [0.5,\ 0.6), which when applied to[0.2,\ 0.26) gives the smaller range [0.23,\ 0.236).Proceeding in this way, the encoded message builds up as follows:.LB.nf.ta \w'after seeing   'u +0.5i +\w'[0.23354, 'uinitially		[0,	1)after seeing	\fIe\fR	[0.2,	0.5)	\fIa\fR	[0.2,	0.26)	\fIi\fR	[0.23,	0.236)	\fIi\fR	[0.233,	0.2336)	\fI!\fR	[0.23354,	0.2336).fi.LEFigure\ 1 shows another representation of the encoding process.The vertical bars with ticks represent the symbol probabilities stipulatedby the model.After the first symbol, \fIe\fR, has been processed, the model is scaledinto the range [0.2,\ 0.5), as shown in part (a).The second symbol, \fIa\fR, scales it again into the range [0.2,\ 0.26).But the picture cannot be continued in this way without a magnifying glass!Consequently Figure\ 1(b) shows the ranges expanded to full height at everystage, and marked with a scale which gives the endpoints as numbers..ppSuppose all the decoder knows about the message is the final range,[0.23354,\ 0.2336).It can immediately deduce that the first character was \fIe\fR, since therange lies entirely within the space the model of Table\ 1 allocates for\fIe\fR.Now it can simulate the operation of the \fIen\fR\^coder:.LB.nf.ta \w'after seeing   'u +0.5i +\w'[0.2, 'uinitially		[0,	1)after seeing	\fIe\fR	[0.2,	0.5).fi.LEThis makes it clear that the second character of the message is \fIa\fR,since this will produce the range.LB.nf.ta \w'after seeing   'u +0.5i +\w'[0.2, 'uafter seeing	\fIa\fR	[0.2,	0.26).fi.LEwhich entirely encloses the given range [0.23354,\ 0.2336).Proceeding like this, the decoder can identify the whole message..ppIt is not really necessary for the decoder to know both ends of the rangeproduced by the encoder.Instead, a single number within the range \(em for example, 0.23355 \(em willsuffice.(Other numbers, like 0.23354, 0.23357, or even 0.23354321, would do just as

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩亚洲综合| 丁香六月综合激情| 激情综合色播激情啊| 国产福利不卡视频| 97超碰欧美中文字幕| 欧美亚一区二区| 精品国产麻豆免费人成网站| 日本一区二区三区久久久久久久久不| 亚洲码国产岛国毛片在线| 日韩一区欧美二区| 国产精品自产自拍| 色噜噜夜夜夜综合网| 日韩亚洲欧美在线观看| 国产精品美女久久久久久2018| 亚洲电影一区二区三区| 国产美女在线精品| 欧美少妇bbb| 欧美国产精品v| 图片区小说区国产精品视频 | 欧美性猛片xxxx免费看久爱| 日韩精品在线看片z| 国产精品盗摄一区二区三区| 青娱乐精品在线视频| 成人黄色一级视频| 91精品国产综合久久蜜臀| 亚洲国产岛国毛片在线| 免费在线一区观看| 色94色欧美sute亚洲线路一ni| 欧美成人一级视频| 亚洲成人自拍一区| 91在线观看视频| 久久久久久久久久久99999| 午夜精品久久久久久久99水蜜桃| 不卡一区二区在线| 欧美精品一区二区三区视频| 亚瑟在线精品视频| 97精品视频在线观看自产线路二| 精品动漫一区二区三区在线观看| 亚洲午夜三级在线| 成人av在线一区二区| 日韩视频免费直播| 亚洲成人在线观看视频| 99久久婷婷国产综合精品| 久久视频一区二区| 日韩精品一级二级 | 国产精品看片你懂得| 免费不卡在线观看| 欧美在线一二三四区| 国产精品久久久久久久第一福利| 久久超碰97人人做人人爱| 在线视频观看一区| 一区二区三区产品免费精品久久75| 国产91在线看| wwwwww.欧美系列| 免费看欧美女人艹b| 欧美日韩卡一卡二| 亚洲影院在线观看| 日本高清视频一区二区| 国产精品国产三级国产普通话蜜臀| 国产精品18久久久久久vr| 精品国产一区二区三区久久久蜜月 | 精品一区二区国语对白| 69堂精品视频| 午夜精品爽啪视频| 欧美日韩久久久一区| 亚洲高清在线视频| 日本国产一区二区| 亚洲精品成人天堂一二三| 91麻豆高清视频| 亚洲男人的天堂在线aⅴ视频| 99久久精品国产导航| 国产精品成人一区二区三区夜夜夜| 国产福利一区在线| 国产三级精品视频| 不卡的av中国片| 中文子幕无线码一区tr| 顶级嫩模精品视频在线看| 亚洲国产高清在线| 91视频com| 亚洲主播在线播放| 777奇米成人网| 免费在线观看精品| 久久尤物电影视频在线观看| 国产精品1024| 成人免费在线视频观看| 色婷婷狠狠综合| 亚洲电影第三页| 日韩视频免费观看高清完整版 | 国产午夜亚洲精品理论片色戒| 国产麻豆成人精品| 国产精品久久久久一区二区三区| 99re这里只有精品视频首页| 亚洲在线视频免费观看| 欧美一区二区在线免费观看| 久久国产尿小便嘘嘘尿| 久久久精品蜜桃| 91麻豆.com| 日韩精品成人一区二区三区| 久久久三级国产网站| 91亚洲精品一区二区乱码| 亚州成人在线电影| 欧美精品一区二区三区在线播放| 成人福利视频在线| 一区二区三区久久| 日韩视频免费观看高清在线视频| 国产精品系列在线观看| 亚洲免费av高清| 欧美成人激情免费网| 成人精品电影在线观看| 亚洲国产成人av网| 国产亚洲成aⅴ人片在线观看| 99riav久久精品riav| 日韩va亚洲va欧美va久久| 国产农村妇女毛片精品久久麻豆| 91免费视频观看| 青青草97国产精品免费观看无弹窗版| 久久精品一区二区三区不卡| 色婷婷一区二区三区四区| 秋霞电影一区二区| 亚洲天堂2014| 欧美一区二区视频观看视频| 成人国产在线观看| 日韩精品成人一区二区在线| 国产精品免费观看视频| 在线播放中文字幕一区| voyeur盗摄精品| 免费看欧美女人艹b| 亚洲精品视频在线看| 精品日韩欧美一区二区| 在线区一区二视频| 国产福利91精品一区二区三区| 亚洲国产成人tv| 国产蜜臀97一区二区三区| 欧美一区二区三区免费大片| 99久久精品费精品国产一区二区| 精品一区二区在线看| 伊人色综合久久天天人手人婷| 久久精品视频免费| 777欧美精品| 91高清在线观看| 国产不卡免费视频| 美女性感视频久久| 亚洲制服丝袜在线| 亚洲欧洲另类国产综合| 欧美成人a∨高清免费观看| 欧美无人高清视频在线观看| 成人自拍视频在线| 精品一区二区在线观看| 性做久久久久久久免费看| √…a在线天堂一区| 久久亚洲春色中文字幕久久久| 欧美理论在线播放| 一本久久精品一区二区| 春色校园综合激情亚洲| 九九国产精品视频| 五月婷婷欧美视频| 亚洲猫色日本管| 亚洲欧洲一区二区三区| 久久婷婷成人综合色| 日韩三级.com| 91精品国产综合久久香蕉的特点| 欧美亚洲国产一区在线观看网站| 99久久综合精品| 成人av午夜影院| 国产成人久久精品77777最新版本 国产成人鲁色资源国产91色综 | 韩国成人在线视频| 蜜臀av一区二区在线观看| 午夜电影久久久| 亚洲国产成人高清精品| 夜夜精品视频一区二区 | 欧美无人高清视频在线观看| 91蜜桃网址入口| 99久久精品国产麻豆演员表| 成人18视频在线播放| 国产成人免费视频一区| 国产精品亚洲午夜一区二区三区 | 国产精品免费视频一区| 欧美激情一区二区三区在线| 国产午夜精品福利| 久久久国产精品午夜一区ai换脸| 精品国产乱子伦一区| 欧美成人一区二区三区在线观看| 欧美一区二区福利在线| 欧美一区二区私人影院日本| 69堂成人精品免费视频| 91精品国产日韩91久久久久久| 欧美精品在欧美一区二区少妇| 欧美日韩成人激情| 91麻豆精品91久久久久久清纯| 制服丝袜一区二区三区| 91精品国产福利| 精品捆绑美女sm三区| 久久综合久久鬼色中文字| 久久亚洲捆绑美女| 欧美激情一区二区三区全黄 | 91搞黄在线观看| 欧美日韩国产免费| 制服.丝袜.亚洲.另类.中文| 欧美一区二区三区白人| 日韩一级高清毛片|