船舶自動操舵儀又稱自動舵,用來保持船舶在給定航向或航跡上航行,是船舶操縱的關(guān)鍵設(shè)備。船舶自動舵尚沒有專用的故障診斷系統(tǒng),當(dāng)前的維修方法不能滿足快速保障和應(yīng)急保障的需要。本文結(jié)合某型自動舵微機(jī)通道故障診斷科研項(xiàng)目,重點(diǎn)論述某型自動舵數(shù)字控制系統(tǒng)的故障診斷設(shè)計(jì)與實(shí)現(xiàn),研究了基于模糊推理的船舶自動舵故障診斷專家系統(tǒng)和基于支持向量機(jī)的船舶自動舵模擬電路故障診斷方法。 對某型自動舵充分調(diào)研,在了解系統(tǒng)軟、硬件的總體技術(shù)要求和指標(biāo)的基礎(chǔ)上,建立檢測對象的數(shù)學(xué)模型和物理模型。確定故障檢測的對象特點(diǎn),為系統(tǒng)故障仿真、參數(shù)辨識做好準(zhǔn)備,并為后續(xù)的故障檢測、診斷方法研究提供了參考。 結(jié)合某型自動舵數(shù)字控制系統(tǒng)實(shí)際情況,確定其故障診斷系統(tǒng)采用分層遞階結(jié)構(gòu)。系統(tǒng)底層為基于嵌入式微處理器的信號檢測單元,負(fù)責(zé)獲取微機(jī)通道的總線控制權(quán)以及信號預(yù)處理;系統(tǒng)中間層為通訊子系統(tǒng),負(fù)責(zé)對底層多個檢測單元信息集中傳送;系統(tǒng)頂層為故障診斷和顯示子系統(tǒng),負(fù)責(zé)對微機(jī)通道的信息進(jìn)行綜合評價,得出最終診斷結(jié)論。 船舶自動舵系統(tǒng)結(jié)構(gòu)繁雜,很多故障很難用精確的公式將它表示出來,提出了基于模糊推理的船舶自動舵故障診斷專家系統(tǒng),提高了自動舵故障診斷準(zhǔn)確性。該系統(tǒng)將模糊數(shù)學(xué)、模糊診斷原理及專家經(jīng)驗(yàn)相結(jié)合,采用模糊產(chǎn)生式知識表示法,確定模糊關(guān)系矩陣及語義距離,設(shè)計(jì)相關(guān)硬件平臺,實(shí)現(xiàn)了船舶自動舵故障診斷模糊專家系統(tǒng)的各個功能模塊。 為解決船舶自動舵模擬電路故障診斷復(fù)雜多樣難于辨識的問題,提出了基于支持向量機(jī)的故障診斷方法。該方法通過電路仿真分析,給出了各故障模式下電壓頻率響應(yīng),提取具有代表性的故障特征,建立了以支持向量機(jī)為基礎(chǔ)的模擬電路故障診斷模型。實(shí)驗(yàn)結(jié)果證明,該方法可有效診斷模擬電路中的元件故障,且對于元件容差引起的故障診斷模型的不確定性具有較強(qiáng)的魯棒性,滿足非線性電路的故障診斷要求。
標(biāo)簽: 自動 故障診斷 系統(tǒng)設(shè)計(jì)
上傳時間: 2013-04-24
上傳用戶:evil
隨著全球能源危機(jī)和環(huán)境污染問題的日益嚴(yán)重,開發(fā)利用清潔的可再生能源勢在必行。太陽能是當(dāng)前世界上最清潔、最現(xiàn)實(shí)、大規(guī)模開發(fā)利用最有前景的可再生能源之一。其中太陽能光伏利用受到世界各國的普遍關(guān)注,而太陽能光伏并網(wǎng)發(fā)電是太陽能光伏利用的主要發(fā)展趨勢,必將得到快速的發(fā)展。此外,高性能的數(shù)字信號處理芯片(DSP)的出現(xiàn),使得一些先進(jìn)的控制策略應(yīng)用于光伏并網(wǎng)逆變器成為可能。本論文就是在此背景下,對太陽能并網(wǎng)發(fā)電系統(tǒng)中的核心器件并網(wǎng)逆變器進(jìn)行了較為深入的研究,具有重要的現(xiàn)實(shí)意義。 太陽能光伏并網(wǎng)發(fā)電系統(tǒng)的兩個核心部分是太陽能電池板的最大功率點(diǎn)跟蹤(MPPT)控制和光伏并網(wǎng)逆變控制。 首先,本文對太陽能電池的工作原理及工作特性進(jìn)行介紹,詳細(xì)分析太陽能電池工作的等效電路和數(shù)學(xué)模型。 其次,本文對幾種傳統(tǒng)的最大功率點(diǎn)跟蹤(MPPT)控制算法進(jìn)行了研究、分析和比較,提出各自優(yōu)缺點(diǎn)。基于最大功率跟蹤過程的快速性和穩(wěn)定性,設(shè)計(jì)采用改進(jìn)的間歇掃描法來實(shí)現(xiàn)光伏發(fā)電系統(tǒng)中太陽能電池的最大功率輸出,以提高系統(tǒng)的性能和最大功率點(diǎn)跟蹤速度。 再次,針對既可獨(dú)立運(yùn)行又可并網(wǎng)運(yùn)行的單相光伏逆變器,本文采用有效值外環(huán)、瞬時值內(nèi)環(huán)的控制方法,既保證了逆變器輸出的靜態(tài)誤差為零,又保證了逆變器良好的輸出波形。給出了同時滿足獨(dú)立和并網(wǎng)兩種運(yùn)行模式的輸出濾波器結(jié)構(gòu)和元件參數(shù)的計(jì)算過程,并通過仿真和實(shí)驗(yàn)驗(yàn)證了設(shè)計(jì)的合理性。 隨后,詳細(xì)討論了并網(wǎng)過程中的軟件鎖相環(huán)技術(shù),對鎖相環(huán)電路的組成、工作原理進(jìn)行了研究,實(shí)驗(yàn)結(jié)果表明此方法可靠有效,能使逆變器輸出電流與電網(wǎng)電壓完全同相,達(dá)到功率因數(shù)為1的目的。 最后,采用TI公司的TMS320LF2407A作為主控芯片,研制完成1.5kW實(shí)驗(yàn)樣機(jī),分別得出了獨(dú)立運(yùn)行和并網(wǎng)運(yùn)行時的實(shí)驗(yàn)結(jié)果,結(jié)果表明,所采用的控制策略和設(shè)計(jì)的硬件電路能夠滿足設(shè)計(jì)要求,系統(tǒng)可安全、穩(wěn)定運(yùn)行。
標(biāo)簽: 太陽能光伏 分 并網(wǎng)發(fā)電
上傳時間: 2013-05-18
上傳用戶:uuuuuuu
超聲波電源廣泛應(yīng)用于超聲波加工、診斷、清洗等領(lǐng)域,其負(fù)載超聲波換能器是一種將超音頻的電能轉(zhuǎn)變?yōu)闄C(jī)械振動的器件。由于超聲換能器是一種容性負(fù)載,因此換能器與發(fā)生器之間需要進(jìn)行阻抗匹配才能工作在最佳狀態(tài)。串聯(lián)匹配能夠有效濾除開關(guān)型電源輸出方波存在的高次諧波成分,因此應(yīng)用較為廣泛。但是環(huán)境溫度或元件老化等原因會導(dǎo)致?lián)Q能器的諧振頻率發(fā)生漂移,使諧振系統(tǒng)失諧。傳統(tǒng)的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統(tǒng)整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時換能器內(nèi)部動態(tài)支路工作在非諧振狀態(tài),導(dǎo)致?lián)Q能器功率損耗和發(fā)熱,致使輸出能量大幅度下降甚至停振,在實(shí)際應(yīng)用中受到限制。所以,在跟蹤諧振點(diǎn)調(diào)節(jié)逆變器開關(guān)頻率的同時應(yīng)改變匹配電感才能使諧振系統(tǒng)工作在最高效能狀態(tài)。針對按固定諧振點(diǎn)匹配超聲波換能器電感參數(shù)存在的缺點(diǎn),本文應(yīng)用耦合振蕩法對換能器的匹配電感和耦合頻率之間的關(guān)系建立數(shù)學(xué)模型,證實(shí)了匹配電感隨諧振頻率變化的規(guī)律。給出利用這一模型與耦合工作頻率之間的關(guān)系動態(tài)選擇換能器匹配電感的方法。經(jīng)過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調(diào)節(jié)電抗值。并給出了實(shí)現(xiàn)這一方案的電路原理和控制方法。最后本文以DSP TMS320F2812為核心設(shè)計(jì)出實(shí)現(xiàn)這一原理的超聲波逆變電源。實(shí)驗(yàn)結(jié)果表明基于磁通控制的可控電抗器可以實(shí)現(xiàn)電抗值隨電抗控制度線性無級可調(diào),由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復(fù)合控制策略,穩(wěn)態(tài)時,換能器工作在DPLL鎖定頻率上;動態(tài)時,逐步修改匹配電抗大小,搜索輸出電流的最大值,再結(jié)合DPLL鎖定該頻率。配合PS-PWM可實(shí)現(xiàn)功率連續(xù)可調(diào)。該超聲波換能系統(tǒng)能夠有效的跟隨最大電流輸出頻率,即使頻率發(fā)生漂移系統(tǒng)仍能保持工作在最佳狀態(tài),具有實(shí)際應(yīng)用價值。
上傳時間: 2013-04-24
上傳用戶:lacsx
諧振變換器相對硬開關(guān)PWM變換器,具有開關(guān)頻率高、關(guān)斷損耗小、效率高、重量輕、體積小、EMI噪聲小、開關(guān)應(yīng)力小等優(yōu)點(diǎn)。而LLC諧振變換器具有原邊開關(guān)管易實(shí)現(xiàn)全負(fù)載范圍內(nèi)的ZVS,次級二極管易實(shí)現(xiàn)ZCS諧振電感和變壓器易實(shí)現(xiàn)磁性元件的集成,以及輸入電壓范圍寬等優(yōu)點(diǎn),因而得到了廣泛的關(guān)注。 本文對諧振變換器的基本分類和各種諧振變換器的優(yōu)缺點(diǎn)進(jìn)行了比較和總結(jié),并與傳統(tǒng)PWM變換器進(jìn)行了對比,總結(jié)出LLC諧振變換器的主要優(yōu)點(diǎn)。并以400W LLC諧振變換器為目標(biāo)設(shè)計(jì),LLC前級使用APFC電路,后一級是LLC諧振變換器。 首先,基于FHA(基波分析法)的方法對LLC諧振變換器進(jìn)了穩(wěn)態(tài)電路的分析,并詳細(xì)闡述了LLC諧振變換器在各個開關(guān)頻率范圍內(nèi)的工作原理和工作特性。隨后,文章詳細(xì)比較了LLC諧振變換器與傳統(tǒng)的諧振變換器和半橋PWM變換器不同之處。 然后,文章分別采用分段線性法和擴(kuò)展描述函數(shù)法建立了LLC諧振變換器的小信號模型。由于分段線性法建立的小信號模型僅考慮了LLC諧振變換器工作在滿負(fù)載的情況下,為了建立更具一般性的模型,論文又采用了擴(kuò)展描述函數(shù)法建模,用以指導(dǎo)控制環(huán)路的設(shè)計(jì)。 接著,論文對整個系統(tǒng)進(jìn)行了綜合設(shè)計(jì)。文章給出了APFC部分的主電路和控制補(bǔ)償回路的具體設(shè)計(jì);同時,也做出了LLC諧振變換器主電路的具體設(shè)計(jì),而LLC諧振變換器控制回路的設(shè)計(jì),仍需要更深一步的研究,并需提出一種切實(shí)可行的設(shè)計(jì)方法。 最后,采用Pspiee軟件建立了仿真模型。仿真結(jié)果得出LLC諧振變換器能在負(fù)載和輸入電壓變化范圍都很大的情況下實(shí)現(xiàn)輸出電壓的穩(wěn)定調(diào)節(jié),并能實(shí)現(xiàn)場效應(yīng)管和二極管的軟開關(guān),驗(yàn)證了理論分析的正確性;由于實(shí)驗(yàn)條件的限制,制作的實(shí)驗(yàn)電路板處于調(diào)試之中,希望進(jìn)一步驗(yàn)證理論設(shè)計(jì)的正確性。
上傳時間: 2013-04-24
上傳用戶:DanXu
當(dāng)今世界,環(huán)境污染嚴(yán)重,能源出現(xiàn)危機(jī),機(jī)動車輛排氣污染已占城市大氣污染的很大比重,電動汽車作為無污染交通工具,在市場上具有很大的優(yōu)越性。而電動汽車充電技術(shù)也在不斷發(fā)展,不斷優(yōu)化。奧運(yùn)臨近,我國為把2008年北京奧運(yùn)會辦成真正的綠色奧運(yùn),將在奧運(yùn)村及北京很多范圍內(nèi)使用電動汽車。本論文針對2008北京奧運(yùn)會用電動汽車,對其充電電源進(jìn)行了系統(tǒng)的研究設(shè)計(jì)。本文提出了以零電壓零電流(ZVZCS)全橋軟開關(guān)變換器為主拓?fù)涞某潆婋娫聪到y(tǒng),實(shí)現(xiàn)了較高功率因數(shù)與高效率的充電設(shè)備。文中首先總結(jié)了電動汽車充電電源的研究現(xiàn)狀和充電控制策略,進(jìn)行了多種全橋軟開關(guān)拓?fù)浔容^,最終選擇采用副邊簡單輔助電路的ZVZCS變換器拓?fù)洌撏負(fù)涫褂靡粋€電容和兩個二極管構(gòu)成副邊輔助電路,無需有損元件和有源開關(guān)器件,輔助電路構(gòu)成簡單,控制方法簡單,能很好的實(shí)現(xiàn)主開關(guān)器件的ZVZCS,也能嵌位副邊整流電壓。以可靠性為大前提,對充電電源進(jìn)行了參數(shù)設(shè)計(jì)。另外,本文針對輕載情況下,超前臂不能實(shí)現(xiàn)零電壓開通的問題,對變換器進(jìn)行了改進(jìn),實(shí)現(xiàn)了全負(fù)載范圍的軟開關(guān)。實(shí)驗(yàn)結(jié)果驗(yàn)證了該拓?fù)鋺?yīng)用于電動汽車充電電源的可行性。
標(biāo)簽: 軟開關(guān) 全橋變換器 電動汽車充電
上傳時間: 2013-07-13
上傳用戶:wdq1111
由于世界能源危機(jī)的日益嚴(yán)重和全球環(huán)境的不斷惡化,大規(guī)模開發(fā)清潔可再生能源成為當(dāng)前能源戰(zhàn)略的主要方向。太陽能作為當(dāng)前世界上最清潔、最現(xiàn)實(shí)、最有大規(guī)模開發(fā)利用前景的可再生能源之一,得到了各界的廣泛關(guān)注。在太陽能的利用中,光伏發(fā)電并網(wǎng)又是其主要發(fā)展方向之一。 由于光伏產(chǎn)業(yè)界目前還沒有統(tǒng)一的標(biāo)準(zhǔn),又因?yàn)楣β实燃壖皯?yīng)用場合的不同,使各種拓?fù)浣Y(jié)構(gòu)的光伏并網(wǎng)變流器都得以嘗試使用。本文就是在此背景下,對當(dāng)前使用的各類光伏并網(wǎng)變流器的拓?fù)浣Y(jié)構(gòu)和控制方法進(jìn)行比較,并結(jié)合光伏并網(wǎng)系統(tǒng)實(shí)際應(yīng)用中暴露的主要缺陷,從適應(yīng)光伏陣列輸出特性和提高系統(tǒng)整體的可靠性兩方面入手,提出Z-source變換器結(jié)合PWM整流器的拓?fù)浣Y(jié)構(gòu)。 文章首先介紹了光伏并網(wǎng)系統(tǒng)中并網(wǎng)變流器的三種隔離回路方式,及應(yīng)用于小功率和中大功率場合的不同主電路拓?fù)浣Y(jié)構(gòu)及控制策略,比較其優(yōu)缺點(diǎn),提出了Z-source變換器結(jié)合PWM整流組成的光伏發(fā)電系統(tǒng)。這種拓?fù)浣Y(jié)構(gòu)可以減小系統(tǒng)中電解電容的體積容量,并解決由太陽能電池板輸出電壓大范圍變化所帶來一系列問題,同時可以在一定程度上改善系統(tǒng)的可靠性問題。其次,文中分析介紹了Z-source變換器的工作原理,對比了三種升壓控制的實(shí)現(xiàn)方式和性能差異,并簡述了逆變器的三種SPWM電流控制策略及其優(yōu)缺點(diǎn)。最后,結(jié)合整體系統(tǒng)需要,將Z-source變換器的升壓控制與PWM整流器的并網(wǎng)控制融合,提出完成逆變并網(wǎng)功能和最大功率點(diǎn)跟蹤的控制思想。 根據(jù)上述分析和研究,選定整體光伏系統(tǒng)的硬件結(jié)構(gòu)和控制方案。詳細(xì)闡述了系統(tǒng)硬件部分的設(shè)計(jì)計(jì)算,提供了系統(tǒng)主電路結(jié)構(gòu)、參數(shù)計(jì)算、元件選型和控制電路的設(shè)計(jì)的詳細(xì)說明,并完成了主電路硬件的制作。根據(jù)空間狀態(tài)方程法對光伏發(fā)電系統(tǒng)進(jìn)行仿真建模,仿真模型包括主電路拓?fù)浼案骺刂谱幽K,文中簡要說明各控制模塊的功能,給出仿真結(jié)果并進(jìn)行分析。驗(yàn)證該系統(tǒng)可以較好的實(shí)現(xiàn)本文提出的控制方案所應(yīng)完成的各項(xiàng)功能,系統(tǒng)工作穩(wěn)定可靠,性能良好。
上傳時間: 2013-07-12
上傳用戶:asd_123
院介紹了全橋逆變電路的工作方式袁探討了隕鄖月栽的柵極特性及動態(tài)開關(guān)過程遙隕鄖月栽柵原射極和柵原 集極間的寄生電容與其他分布參數(shù)的綜合作用會對驅(qū)動波形產(chǎn)生不利影響遙柵極驅(qū)動電壓必須有足夠 快的上升和下降速度袁使隕鄖月栽盡快開通和關(guān)斷袁以減小開通和關(guān)斷損耗遙在 隕鄖月栽導(dǎo)通后袁驅(qū)動電壓 應(yīng)保持在垣員緣 災(zāi)左右袁保證隕鄖月栽處于飽和狀態(tài)曰在 隕鄖月栽關(guān)斷期間袁隕鄖月栽 的柵極需加反向偏置電壓袁 避免隕鄖月栽 的誤動作遙最后給出了針對全橋逆變電路 隕鄖月栽 模塊設(shè)計(jì)的分立元件驅(qū)動電路及其實(shí)驗(yàn) 結(jié)果遙 關(guān)鍵詞院隕鄖月栽曰全橋逆變曰驅(qū)動電路
上傳時間: 2013-05-20
上傳用戶:cy1109
本課題為電流型高電壓隔離電源,它是基于交流電流母線的分布式系統(tǒng),能夠整定短路電流,適應(yīng)高電壓工作環(huán)境的隔離電源。本論文介紹了該課題的應(yīng)用場合,簡要介紹了分布式系統(tǒng)的種類及各自優(yōu)勢,以及已有的電流型副邊穩(wěn)壓電路相關(guān)的研究成果,并在此基礎(chǔ)上提出了本課題的研究目標(biāo)。 本篇論文主要針對課題方案的三個方面進(jìn)行論述,分別闡述如下: 一,母線電流產(chǎn)生系統(tǒng)與電流型副邊開關(guān)電路的匹配問題,包括各部分電路的功能介紹、電流型副邊開關(guān)電路的小信號等效電路的建模、高電壓隔離變壓器及磁元件的選擇; 二,模塊體積小型化有利于高壓部件的設(shè)計(jì)安裝和EMS防護(hù)。為了省去體積較大的輔助電源部分,本課題采用了副邊電路自供電的方式。在低壓自供電方式下,利用比較器、TLA31等器件產(chǎn)生多路同步三角波以及開關(guān)驅(qū)動PWM脈沖。對自供電方式下的三角波振蕩器進(jìn)行比較,并對三角波振蕩器電路模塊進(jìn)行了建模以及系統(tǒng)反饋補(bǔ)償; 三,在本方案中實(shí)現(xiàn)了電流源拓?fù)涞耐秸骷夹g(shù),利用PMOS管替代續(xù)流二極管,減小了電路的損耗、散熱器的使用以及模塊的體積。 本篇論文對本課題設(shè)計(jì)的核心部分進(jìn)行了比較詳細(xì)的介紹和分析,具體的參數(shù)計(jì)算方法也一一列出。最終,論文以研究目標(biāo)為方向,通過一系列的改進(jìn)措施,基本實(shí)現(xiàn)了課題要求。
標(biāo)簽: 電流型 高電壓 隔離開關(guān)
上傳時間: 2013-06-24
上傳用戶:wmwai1314
隨著數(shù)字集成電路技術(shù)的不斷發(fā)展,數(shù)字集成電路的供電電源-電壓調(diào)節(jié)模塊(VRM)也有了新的發(fā)展趨勢:輸出功率越來越大、輸出電壓越來越低、輸出電流越來越大。因此,對低輸出電壓、大輸出電流的VRM及其相關(guān)技術(shù)的研究在最近幾年受到廣泛的關(guān)注。 本文以36V-72V輸入、1V/30A輸出的VRM為研究對象,對VRM電路拓?fù)溥M(jìn)行分類和比較,篩選出正反激拓?fù)錇橹麟娐罚⒃敿?xì)研究了針對正反激拓?fù)涞男滦屯秸黩?qū)動方案。首先,分析了在軟開關(guān)環(huán)境下,有源筘位正反激電路的詳細(xì)工作過程;其次,介紹了同步整流技術(shù)的概念,對同步整流驅(qū)動方案進(jìn)行了分類,篩選出適用于正反激拓?fù)涞男滦屯秸黩?qū)動方案,并詳細(xì)分析了該驅(qū)動電路的工作原理;再次,介紹了有源箝位正反激電路主要元件的設(shè)計(jì)方法,介紹了新型同步整流驅(qū)動電路的設(shè)計(jì)要點(diǎn),并給出設(shè)計(jì)實(shí)例;最后,對電路仿真,并制作了一臺36V-72V輸入、1V/30A輸出的實(shí)驗(yàn)樣機(jī),驗(yàn)證了研究結(jié)果和設(shè)計(jì)方案。
上傳時間: 2013-06-16
上傳用戶:songnanhua
本書主要闡述設(shè)計(jì)射頻與微波功率放大器所需的理論、方法、設(shè)計(jì)技巧,以及將分析計(jì)算與計(jì)算機(jī)輔助設(shè)計(jì)相結(jié)合的優(yōu)化設(shè)計(jì)方法。這些方法提高了設(shè)計(jì)效率,縮短了設(shè)計(jì)周期。本書內(nèi)容覆蓋非線性電路設(shè)計(jì)方法、非線性主動設(shè)備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設(shè)計(jì)、寬帶功率放大器及通信系統(tǒng)中的功率放大器設(shè)計(jì)。 本書適合從事射頻與微波動功率放大器設(shè)計(jì)的工程師、研究人員及高校相關(guān)專業(yè)的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設(shè)計(jì)工程師,他曾經(jīng)任教于澳大利亞Linz大學(xué)、新加坡微電子學(xué)院、莫斯科通信和信息技術(shù)大學(xué)。他目前正在講授研究班課程,在該班上,本書作為國際微波年會論文集。 目錄 第1章 雙口網(wǎng)絡(luò)參數(shù) 1.1 傳統(tǒng)的網(wǎng)絡(luò)參數(shù) 1.2 散射參數(shù) 1.3 雙口網(wǎng)絡(luò)參數(shù)間轉(zhuǎn)換 1.4 雙口網(wǎng)絡(luò)的互相連接 1.5 實(shí)際的雙口電路 1.5.1 單元件網(wǎng)絡(luò) 1.5.2 π形和T形網(wǎng)絡(luò) 1.6 具有公共端口的三口網(wǎng)絡(luò) 1.7 傳輸線 參考文獻(xiàn) 第2章 非線性電路設(shè)計(jì)方法 2.1 頻域分析 2.1.1 三角恒等式法 2.1.2 分段線性近似法 2.1.3 貝塞爾函數(shù)法 2.2 時域分析 2.3 NewtOn.Raphscm算法 2.4 準(zhǔn)線性法 2.5 諧波平衡法 參考文獻(xiàn) 第3章 非線性有源器件模型 3.1 功率MOSFET管 3.1.1 小信號等效電路 3.1.2 等效電路元件的確定 3.1.3 非線性I—V模型 3.1.4 非線性C.V模型 3.1.5 電荷守恒 3.1.6 柵一源電阻 3.1.7 溫度依賴性 3.2 GaAs MESFET和HEMT管 3.2.1 小信號等效電路 3.2.2 等效電路元件的確定 3.2.3 CIJrtice平方非線性模型 3.2.4 Curtice.Ettenberg立方非線性模型 3.2.5 Materka—Kacprzak非線性模型 3.2.6 Raytheon(Statz等)非線性模型 3.2.7 rrriQuint非線性模型 3.2.8 Chalmers(Angek)v)非線性模型 3.2.9 IAF(Bemth)非線性模型 3.2.10 模型選擇 3.3 BJT和HBT汀管 3.3.1 小信號等效電路 3.3.2 等效電路中元件的確定 3.3.3 本征z形電路與T形電路拓?fù)渲g的等效互換 3.3.4 非線性雙極器件模型 參考文獻(xiàn) 第4章 阻抗匹配 4.1 主要原理 4.2 Smith圓圖 4.3 集中參數(shù)的匹配 4.3.1 雙極UHF功率放大器 4.3.2 M0SFET VHF高功率放大器 4.4 使用傳輸線匹配 4.4.1 窄帶功率放大器設(shè)計(jì) 4.4.2 寬帶高功率放大器設(shè)計(jì) 4.5 傳輸線類型 4.5.1 同軸線 4.5.2 帶狀線 4.5.3 微帶線 4.5.4 槽線 4.5.5 共面波導(dǎo) 參考文獻(xiàn) 第5章 功率合成器、阻抗變換器和定向耦合器 5.1 基本特性 5.2 三口網(wǎng)絡(luò) 5.3 四口網(wǎng)絡(luò) 5.4 同軸電纜變換器和合成器 5.5 wilkinson功率分配器 5.6 微波混合橋 5.7 耦合線定向耦合器 參考文獻(xiàn) 第6章 功率放大器設(shè)計(jì)基礎(chǔ) 6.1 主要特性 6.2 增益和穩(wěn)定性 6.3 穩(wěn)定電路技術(shù) 6.3.1 BJT潛在不穩(wěn)定的頻域 6.3.2 MOSFET潛在不穩(wěn)定的頻域 6.3.3 一些穩(wěn)定電路的例子 6.4 線性度 6.5 基本的工作類別:A、AB、B和C類 6.6 直流偏置 6.7 推挽放大器 6.8 RF和微波功率放大器的實(shí)際外形 參考文獻(xiàn) 第7章 高效率功率放大器設(shè)計(jì) 7.1 B類過激勵 7.2 F類電路設(shè)計(jì) 7.3 逆F類 7.4 具有并聯(lián)電容的E類 7.5 具有并聯(lián)電路的E類 7.6 具有傳輸線的E類 7.7 寬帶E類電路設(shè)計(jì) 7.8 實(shí)際的高效率RF和微波功率放大器 參考文獻(xiàn) 第8章 寬帶功率放大器 8.1 Bode—Fan0準(zhǔn)則 8.2 具有集中元件的匹配網(wǎng)絡(luò) 8.3 使用混合集中和分布元件的匹配網(wǎng)絡(luò) 8.4 具有傳輸線的匹配網(wǎng)絡(luò) 8.5 有耗匹配網(wǎng)絡(luò) 8.6 實(shí)際設(shè)計(jì)一瞥 參考文獻(xiàn) 第9章 通信系統(tǒng)中的功率放大器設(shè)計(jì) 9.1 Kahn包絡(luò)分離和恢復(fù)技術(shù) 9.2 包絡(luò)跟蹤 9.3 異相功率放大器 9.4 Doherty功率放大器方案 9.5 開關(guān)模式和雙途徑功率放大器 9.6 前饋線性化技術(shù) 9.7 預(yù)失真線性化技術(shù) 9.8 手持機(jī)應(yīng)用的單片cMOS和HBT功率放大器 參考文獻(xiàn)
標(biāo)簽: 射頻 微波功率 放大器設(shè)計(jì)
上傳時間: 2013-04-24
上傳用戶:W51631
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1