at91rm9200啟動過程教程 系統上電,檢測BMS,選擇系統的啟動方式,如果BMS為高電平,則系統從片內ROM啟動。AT91RM9200的ROM上電后被映射到了0x0和0x100000處,在這兩個地址處都可以訪問到ROM。由于9200的ROM中固化了一個BOOTLOAER程序。所以PC從0X0處開始執行這個BOOTLOAER(準確的說應該是一級BOOTLOADER)。這個BOOTLOER依次完成以下步驟: 1、PLL SETUP,設置PLLB產生48M時鐘頻率提供給USB DEVICE。同時DEBUG USART也被初始化為48M的時鐘頻率; 2、相應模式下的堆棧設置; 3、檢測主時鐘源(Main oscillator); 4、中斷控制器(AIC)的設置; 5、C 變量的初始化; 6、跳到主函數。 完成以上步驟后,我們可以認為BOOT過程結束,接下來的就是LOADER的過程,或者也可以認為是裝載二級BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、連接在外部總線上的8位并行FLASH的順序依次來找合法的BOOT程序。所謂合法的指的是在這些存儲設備的開始地址處連續的存放的32個字節,也就是8條指令必須是跳轉指令或者裝載PC的指令,其實這樣規定就是把這8條指令當作是異常向量表來處理。必須注意的是第6條指令要包含將要裝載的映像的大小。關于如何計算和寫這條指令可以參考用戶手冊。一旦合法的映像找到之后,則BOOT程序會把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超過16K-3K的大小。當BOOT程序完成了把合法的映像搬到SRAM的任務以后,接下來就進行存儲器的REMAP,經過REMAP之后,SRAM從映設前的0X200000地址處被映設到了0X0地址并且程序從0X0處開始執行。而ROM這時只能在0X100000這個地址處看到了。至此9200就算完成了一種形式的啟動過程。如果BOOT程序在以上所列的幾種存儲設備中找到合法的映像,則自動初始化DEBUG USART口和USB DEVICE口以準備從外部載入映像。對DEBUG口的初始化包括設置參數115200 8 N 1以及運行XMODEM協議。對USB DEVICE進行初始化以及運行DFU協議?,F在用戶可以從外部(假定為PC平臺)載入你的映像了。在PC平臺下,以WIN2000為例,你可以用超級終端來完成這個功能,但是還是要注意你的映像的大小不能超過13K。一旦正確從外部裝載了映像,接下來的過程就是和前面一樣重映設然后執行映像了。我們上面講了BMS為高電平,AT91RM9200選擇從片內的ROM啟動的一個過程。如果BMS為低電平,則AT91RM9200會從片外的FLASH啟動,這時片外的FLASH的起始地址就是0X0了,接下來的過程和片內啟動的過程是一樣的,只不過這時就需要自己寫啟動代碼了,至于怎么寫,大致的內容和ROM的BOOT差不多,不同的硬件設計可能有不一樣的地方,但基本的都是一樣的。由于片外FLASH可以設計的大,所以這里編寫的BOOTLOADER可以一步到位,也就是說不用像片內啟動可能需要BOOT好幾級了,目前AT91RM9200上使用較多的bootloer是u-boot,這是一個開放源代碼的軟件,用戶可以自由下載并根據自己的應用配置??偟恼f來,筆者以為AT91RM9200的啟動過程比較簡單,ATMEL的服務也不錯,不但提供了片內啟動的功能,還提供了UBOOT可供下載。筆者寫了一個BOOTLODER從片外的FLASHA啟動,效果還可以。 uboot結構與使用uboot是一個龐大的公開源碼的軟件。他支持一些系列的arm體系,包含常見的外設的驅動,是一個功能強大的板極支持包。其代碼可以 http://sourceforge.net/projects/u-boot下載 在9200上,為了啟動uboot,還有兩個boot軟件包,分別是loader和boot。分別完成從sram和flash中的一級boot。其源碼可以從atmel的官方網站下載。 我們知道,當9200系統上電后,如果bms為高電平,則系統從片內rom啟動,這時rom中固化的boot程序初始化了debug口并向其發送'c',這時我們打開超級終端會看到ccccc...。這說明系統已經啟動,同時xmodem協議已經啟動,用戶可以通過超級終端下載用戶的bootloader。作為第一步,我們下載loader.bin.loader.bin將被下載到片內的sram中。這個loder完成的功能主要是初始化時鐘,sdram和xmodem協議,為下載和啟動uboot做準備。當下載了loader.bin后,超級終端會繼續打?。篶cccc....。這時我們就可以下在uboot了。uboot將被下載到sdram中的一個地址后并把pc指針調到此處開始執行uboot。接著我們就可以在終端上看到uboot的shell啟動了,提示符uboot>,用戶可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了對內存、flash、網絡、系統啟動等一些命令。 如果系統上電時bms為低電平,則系統從片外的flash啟動。為了從片外的flash啟動uboot,我們必須把boot.bin放到0x0地址出,使得從flash啟動后首先執行boot.bin,而要少些boot.bin,就要先完成上面我們講的那些步驟,首先開始從片內rom啟動uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz燒寫到flash中的目的,假如我們已經啟動了uboot,可以這樣操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系統復位,就可以看到系統先啟動boot,然后解壓縮uboot.gz,然后啟動uboot。注意,這里uboot必須壓縮成.gz文件,否則會出錯。 怎么編譯這三個源碼包呢,首先要建立一個arm的交叉編譯環境,關于如何建立,此處不予說明。建立好了以后,分別解壓源碼包,然后修改Makefile中的編譯器項目,正確填寫你的編譯器的所在路徑。 對loader和boot,直接make。對uboot,第一步:make_at91rm9200dk,第二步:make。這樣就會在當前目錄下分別生成*.bin文件,對于uboot.bin,我們還要壓縮成.gz文件。 也許有的人對loader和boot搞不清楚為什么要兩個,有什么區別嗎?首先有區別,boot主要完成從flash中啟動uboot的功能,他要對uboot的壓縮文件進行解壓,除此之外,他和loader并無大的區別,你可以把boot理解為在loader的基礎上加入了解壓縮.gz的功能而已。所以這兩個并無多大的本質不同,只是他們的使命不同而已。 特別說名的是這三個軟件包都是開放源碼的,所以用戶可以根據自己的系統的情況修改和配置以及裁減,打造屬于自己系統的bootloder。
上傳時間: 2013-10-27
上傳用戶:wsf950131
關于PCB封裝的資料收集整理. 大的來說,元件有插裝和貼裝.零件封裝是指實際零件焊接到電路板時所指示的外觀和焊點的位置。是純粹的空間概念.因此不同的元件可共用同一零件封裝,同種元件也可有不同的零件封裝。像電阻,有傳統的針插式,這種元件體積較大,電路板必須鉆孔才能安置元件,完成鉆孔后,插入元件,再過錫爐或噴錫(也可手焊),成本較高,較新的設計都是采用體積小的表面貼片式元件(SMD)這種元件不必鉆孔,用鋼膜將半熔狀錫膏倒入電路板,再把SMD 元件放上,即可焊接在電路板上了。晶體管是我們常用的的元件之一,在DEVICE。LIB庫中,簡簡單單的只有NPN與PNP之分,但實際上,如果它是NPN的2N3055那它有可能是鐵殼子的TO—3,如果它是NPN的2N3054,則有可能是鐵殼的TO-66或TO-5,而學用的CS9013,有TO-92A,TO-92B,還有TO-5,TO-46,TO-52等等,千變萬化。還有一個就是電阻,在DEVICE 庫中,它也是簡單地把它們稱為RES1 和RES2,不管它是100Ω 還是470KΩ都一樣,對電路板而言,它與歐姆數根本不相關,完全是按該電阻的功率數來決定的我們選用的1/4W 和甚至1/2W 的電阻,都可以用AXIAL0.3 元件封裝,而功率數大一點的話,可用AXIAL0.4,AXIAL0.5等等?,F將常用的元件封裝整理如下:電阻類及無極性雙端元件:AXIAL0.3-AXIAL1.0無極性電容:RAD0.1-RAD0.4有極性電容:RB.2/.4-RB.5/1.0二極管:DIODE0.4及DIODE0.7石英晶體振蕩器:XTAL1晶體管、FET、UJT:TO-xxx(TO-3,TO-5)可變電阻(POT1、POT2):VR1-VR5這些常用的元件封裝,大家最好能把它背下來,這些元件封裝,大家可以把它拆分成兩部分來記如電阻AXIAL0.3 可拆成AXIAL 和0.3,AXIAL 翻譯成中文就是軸狀的,0.3 則是該電阻在印刷電路板上的焊盤間的距離也就是300mil(因為在電機領域里,是以英制單位為主的。同樣的,對于無極性的電容,RAD0.1-RAD0.4也是一樣;對有極性的電容如電解電容,其封裝為RB.2/.4,RB.3/.6 等,其中“.2”為焊盤間距,“.4”為電容圓筒的外徑。對于晶體管,那就直接看它的外形及功率,大功率的晶體管,就用TO—3,中功率的晶體管,如果是扁平的,就用TO-220,如果是金屬殼的,就用TO-66,小功率的晶體管,就用TO-5,TO-46,TO-92A等都可以,反正它的管腳也長,彎一下也可以。對于常用的集成IC電路,有DIPxx,就是雙列直插的元件封裝,DIP8就是雙排,每排有4個引腳,兩排間距離是300mil,焊盤間的距離是100mil。SIPxx 就是單排的封裝。等等。值得我們注意的是晶體管與可變電阻,它們的包裝才是最令人頭痛的,同樣的包裝,其管腳可不一定一樣。例如,對于TO-92B之類的包裝,通常是1 腳為E(發射極),而2 腳有可能是B 極(基極),也可能是C(集電極);同樣的,3腳有可能是C,也有可能是B,具體是那個,只有拿到了元件才能確定。因此,電路軟件不敢硬性定義焊盤名稱(管腳名稱),同樣的,場效應管,MOS 管也可以用跟晶體管一樣的封裝,它可以通用于三個引腳的元件。Q1-B,在PCB 里,加載這種網絡表的時候,就會找不到節點(對不上)。在可變電阻
上傳時間: 2013-11-03
上傳用戶:daguogai
HT46R22單片機在電磁爐功率控制中的應用:介紹了電磁爐的基本工作原理,并提出了一種采用HT46R22 單片機實現電磁爐功率穩定輸出的功率控制方法,最后簡單介紹了該方法的軟硬件設計過程。關鍵詞:電磁爐;HT46R22;功率控制引言近年來,隨著環保和節能意識的逐步提高,一種新興的"綠色的廚具"--電磁爐正在家庭中普及。它改變了傳統的明火烹調方式,利用電磁感應原理,使電流通過內置的線圈時產生磁場,磁場內的磁力線感應到鐵制器皿,產生無數高速運動的小渦流,渦流產生的巨大循環能量轉換為有效熱能,使鍋具自行高速加熱,最終直接加熱食物。電磁爐的熱效率達到90%以上,同時它無煙無灰,無污染,不升高室溫,不產生一氧化碳等有害物質,安全環保。電磁爐還采用了微電腦控制,能夠隨意控制溫度。正是由于上述種種優點,電磁爐在發達國家的家庭普及率已經達到80%以上。為了提高電熱轉換率,家用電磁爐一般采用的是高頻電磁爐,須將工頻電整流成直流電后再逆變成20kHz 以上的高頻振蕩電流,在高頻下,穩定功率輸出和實時檢測就成了設計的難點和關鍵所在。采用Holtek 公司產的A/D 型單片機HT46R22 可以方便地實現定溫控制、實時檢測、報警檢測和功率控制,本文著重介紹功率控制的實現。
上傳時間: 2013-10-21
上傳用戶:colinal
含原理圖+電路圖+程序的波形發生器:在工作中,我們常常會用到波形發生器,它是使用頻度很高的電子儀器?,F在的波形發生器都采用單片機來構成。單片機波形發生器是以單片機核心,配相應的外圍電路和功能軟件,能實現各種波形發生的應用系統,它由硬件部分和軟件部分組成,硬件是系統的基礎,軟件則是在硬件的基礎上,對其合理的調配和使用,從而完成波形發生的任務。 波形發生器的技術指標:(1) 波形類型:方型、正弦波、三角波、鋸齒波;(2) 幅值電壓:1V、2V、3V、4V、5V;(3) 頻率值:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;(4) 輸出極性:雙極性操作設計1、 機器通電后,系統進行初始化,LED在面板上顯示6個0,表示系統處于初始狀態,等待用戶輸入設置命令,此時,無任何波形信號輸出。2、 用戶按下“F”、“V”、“W”,可以分別進入頻率,幅值波形設置,使系統進入設置狀態,相應的數碼管顯示“一”,此時,按其它鍵,無效;3、 在進入某一設置狀態后,輸入0~9等數字鍵,(數字鍵僅在設置狀態時,有效)為欲輸出的波形設置相應參數,LED將參數顯示在面板上;4、 如果在設置中,要改變已設定的參數,可按下“CL”鍵,清除所有已設定參數,系統恢復初始狀態,LED顯示6個0,等待重新輸入命令;5、 當必要的參數設定完畢后,所有參數顯示于LED上,用戶按下“EN”鍵,系統會將各波形參數傳遞到波形產生模塊中,以便控制波形發生,實現不同頻率,不同電壓幅值,不同類型波形的輸出;6、 用戶按下“EN”鍵后,波形發生器開始輸出滿足參數的波形信號,面板上相應類型的運行指示燈閃爍,表示波形正在輸出,LED顯示波形類型編號,頻率值、電壓幅值等波形參數;7、 波形發生器在輸出信號時,按下任意一個鍵,就停止波形信號輸出,等待重新設置參數,設置過程如上所述,如果不改變參數,可按下“EN”鍵,繼續輸出原波形信號;8、 要停止波形發生器的使用,可按下復位按鈕,將系統復位,然后關閉電源。硬件組成部分通過綜合比較,決定選用獲得廣泛應用,性能價格高的常用芯片來構成硬件電路。單片機采用MCS-51系列的89C51(一塊),74LS244和74LS373(各一塊),反相驅動器 ULN2803A(一塊),運算放大器 LM324(一塊) 波形發生器的硬件電路由單片機、鍵盤顯示器接口電路、波形轉換(D/ A)電路和電源線路等四部分構成。1.單片機電路功能:形成掃描碼,鍵值識別,鍵功能處理,完成參數設置;形成顯示段碼,向LED顯示接口電路輸出;產生定時中斷;形成波形的數字編碼,并輸出到D/A接口電路;如電路原理圖所示: 89C51的P0口和P2口作為擴展I/O口,與8255、0832、74LS373相連接,可尋址片外的寄存器。單片機尋址外設,采用存儲器映像方式,外部接口芯片與內部存儲器統一編址,89C51提供16根地址線P0(分時復用)和P2,P2口提供高8位地址線,P0口提供低8位地址線。P0口同時還要負責與8255,0832的數據傳遞。P2.7是8255的片選信號,P2.6是0832(1)的片選,P2.5是0832(2)的片選,低電平有效,P0.0、P0.1經過74LS373鎖存后,送到8255的A1、A2作,片內A口,B口,C口,控制口等寄存器的字選。89C51的P1口的低4位連接4只發光三極管,作為波形類型指示燈,表示正在輸出的波形是什么類型。單片機89C51內部有兩個定時器/計數器,在波形發生器中使用T0作為中斷源。不同的頻率值對應不同的定時初值,定時器的溢出信號作為中斷請求??刂贫〞r器中斷的特殊功能寄存器設置如下:定時控制寄存器TCON=(00010000)工作方式選擇寄存器(TMOD)=(00000000)中斷允許控制寄存器(IE)=(10000010)2、鍵盤顯示器接口電路功能:驅動6位數碼管動態顯示; 提供響應界面; 掃面鍵盤; 提供輸入按鍵。由并口芯片8255,鎖存器74LS273,74LS244,反向驅動器ULN2803A,6位共陰極數碼管(LED)和4×4行列式鍵盤組成。8255的C口作為鍵盤的I/O接口,C口的低4位輸出到掃描碼,高4位作為輸入行狀態,按鍵的分布如圖所示。8255的A口作為LED段碼輸出口,與74LS244相連接,B口作為LED的位選信號輸出口,與ULN2803A相連接。8255內部的4個寄存器地址分配如下:控制口:7FFFH , A口:7FFFCH , B口:7FFDH , C口:7FFEH 3、D/A電路功能:將波形樣值的數字編碼轉換成模擬值;完成單極性向雙極性的波形輸出;構成由兩片0832和一塊LM324運放組成。0832(1)是參考電壓提供者,單片機向0832(1)內的鎖存器送數字編碼,不同的編碼會產生不同的輸出值,在本發生器中,可輸出1V、2V、3V、4V、5V等五個模擬值,這些值作為0832(2)的參考電壓,使0832(2)輸出波形信號時,其幅度是可調的。0832(2)用于產生各種波形信號,單片機在波形產生程序的控制下,生成波形樣值編碼,并送到0832(2)中的鎖存器,經過D/A轉換,得到波形的模擬樣值點,假如N個點就構成波形的一個周期,那么0832(2)輸出N個樣值點后,樣值點形成運動軌跡,就是波形信號的一個周期。重復輸出N個點后,由此成第二個周期,第三個周期……。這樣0832(2)就能連續的輸出周期變化的波形信號。運放A1是直流放大器,運放A2是單極性電壓放大器,運放A3是雙極性驅動放大器,使波形信號能帶得起負載。地址分配:0832(1):DFFFH ,0832(2):BFFFH4、電源電路:功能:為波形發生器提供直流能量;構成由變壓器、整流硅堆,穩壓塊7805組成。220V的交流電,經過開關,保險管(1.5A/250V),到變壓器降壓,由220V降為10V,通過硅堆將交流電變成直流電,對于諧波,用4700μF的電解電容給予濾除。為保證直流電壓穩定,使用7805進行穩壓。最后,+5V電源配送到各用電負載。
上傳時間: 2013-11-08
上傳用戶:685
作為嵌入式系統主控單元——單片機,其軟件往往是一個微觀的實時操作系統,且大部分是為某種應用而專門設計的。系統程序有實時過程控制或實時信息處理的能力,要求能夠及時響應隨機發生的外部事件并對該事件做出快速處理。而分時操作系統卻是把CPU的時間劃分成長短基本相同的時間區間,即“時間片”,通過操作系統的管理,把這些時間片依次輪流地分配給各個用戶使用。如果某個作業在時間片結束之前,整個任務還沒有完成,那么該作業就被暫停下來,放棄CPU,等待下一輪循環再繼續做。此時CPU又分配給另一個作業去使用。由于計算機的處理速度很快,只要時間片的間隔取得適當,那么一個用戶作業從用完分配給它的一個時間片到獲得下一個CPU時間片,中間有所“停頓”;但用戶察覺不出來,好像整個系統全由它“獨占”似的。分時操作系統主要具有以下3個特點:① 多路性。用戶通過各自的終端,可以同時使用一個系統。② 及時性。用戶提出的各種要求,能在較短或可容忍的時間內得到響應和處理。③ 獨占性。在分時系統中,雖然允許多個用戶同時使用一個CPU,但用戶之間操作獨立,互不干涉。分時操作系統主要是針對小型機以上的計算機提出的。一般而言,微處理器(MPU)驅動的通用計算機,系統設計人員對每一臺的最終具體應用都是不得而知的,因此,在價格允許的情況下,硬件設計務求CPU時鐘盡可能的快;計算及管理能力盡可能的強;程序和數據存儲器的容量盡可能的大;各種計算機外設的配接盡可能的詳盡等等,特別是采用分時操作系統的機器,因為是一機多用戶的管理系統,它的要求就更高了。相對而言,微控制器(MCU)俗稱單片機,是一個單片集成系統,它將這些或那些計算機所需的外設,諸如程序和數據存儲器、端口以及有關的子系統集成到一片芯片上。從硬件上,單片機系統與采用分時操作系統的計算機系統是無法比擬的。但是,在單片機系統的設計中,設計人員對其最終具體應用是一清二楚的,它的使用環境相對是單一固定的。所控制的過程的可預見性為分時系統思想的實現提供了可能性。具體一點就是:雖然單片機的CPU速度較低,但其任務是可預見的,這樣作業調度將變得簡單而無須占用很多的CPU時間,同時“時間片”的設計是具體而有針對性的,因此可變得很有效。一、單片機分時系統的設計單片機系統往往是一個嵌入式的控制系統,因此目前絕大部分的單片機系統還是一實時系統。能夠真正體現分時系統的設計思想的往往是那些多路重復檢測控制系統。即便是在這些多路重復檢測控制系統中,它的實時性也是非常重要的。也就是說,在單片機系統中應用了分時系統設計思想,但其及時性應首先進行考慮。
上傳時間: 2013-12-23
上傳用戶:佳期如夢
80C51單片機由于功能全面、開發工具較為完善、衍生產品豐富、大量的設計資源可以繼承和共享,得到廣泛的應用。我們設計的一款手持線PDA產品,也選擇80C51單片機作為主、輔CPU,還具備點陣液晶顯示屏、導電橡膠鍵盤、雙IC卡接口、EEPROM存儲器、實時時鐘和串行通信口。由于使用80C51單片機開發,高級語言編程,大大降低了設計的技術風險,產品在較短的時間內就推向了市場。但是,同一些低速的微控制器(如4位單片機)和高速的RISC處理器相比,80C51單片機在功耗上沒有優勢。為了在PDA類產品中發揮80C51單片機的上述特長,我們通過采取軟、硬件配合的一系列措施,加強低電壓、低功耗設計,取得了良好的效果。該機使用一顆3V鈕扣式鋰電池,開機時工作電池小于4mA,瞬間最大工作電流小于20mA,瞬間最大工作電流小于20mA,關機電流小于2μA。一顆電池可以使用較長的時間,達到滿意的設計指標。一、低電壓低功耗設計理論在一個器件中,功耗通常用電流消耗來表示。下式表明消耗的電池與器件特性之間的關系:Icc = C ∫ Vda ≈ ΔV · C · f (1)式中:Icc是器件消耗的電流;Δ是電壓變化的幅值;C是器件電容和輸出容性負載的大小;f是器件運行頻率。從公式(1)可以得到降低系統功耗的理論依據。將器件供電電壓從5V降低3V,可以至少降低40%的功耗。降低器件的工作頻率,也能成比例地降低功耗。
上傳時間: 2013-10-13
上傳用戶:shaojie2080
利用FPGA 設計一個類似點陣LCD 顯示的VGA 顯示控制器,可實現文字及簡單的圖表顯示。工作時只需將要顯示內容轉換成對應字模送入FPGA,即可實現相應內容的顯示。關鍵詞:FPGA;VGA;顯示控制 隨著數字圖像處理的應用領域的不斷擴大,其實時處理技術成為研究的熱點。EDA(電子設計自動化)技術的迅猛發展為數字圖像實時處理技術提供了硬件基礎。其中FPGA 的特點適用于進行一些基于像素級的圖像處理[1]。LCD 和CRT 顯示器作為一種通用型顯示設備,如今已經廣泛應用于工作和生活中。與嵌入式系統中常用的顯示器件相比,它具有顯示面積大、色彩豐富、承載信息量大、接口簡單等優點,如果將其應用到嵌入式系統中,可以顯著提升產品的視覺效果。為此,嘗試將VGA 顯示的控制轉化到FPGA 來完成實現。
上傳時間: 2013-10-26
上傳用戶:lgd57115700
一種采用Altera Cyclone Ⅲ FPGA將標準清晰度電視(SDTV)轉換成高清晰度電視(HDTV)的方法.用圖像插值技術,充分利用了原始圖像,實現視頻格式水平方向上行內像素點的增加及垂直方向上行數的提升,滿足高清晰度電視格式的標準輸出.整個上變換模塊的復雜度低,易于硬件實現,完成了專用格式轉換芯片的功能,在工程應用中有利于提高系統的集成度和靈活性.
上傳時間: 2013-11-22
上傳用戶:lansedeyuntkn
在兩跳MIMO中繼通信系統的預編碼相關研究中,提出了一種級聯預編碼算法,該算法把兩跳系統的預編碼分解成兩個獨立的部分,從而把預編碼問題轉化成為求源節點到中繼節點的預編碼過程以及中繼節點到目的節點的過程。本文使用MMSE準則,在簡化迭代算法復雜度的同時,與一種只在中繼節點進行聯合優化的算法進行比較,由仿真可以看出,本文算法有一定的性能提升。
上傳時間: 2013-11-12
上傳用戶:xiaoyuer
傾角度傳感器,應用于水利閘門自動控制系統 ——目前,翻板式水閘門控制系統前端設備一般是由翻板水閘、油缸以及固定在油缸上的鋼索式閘門開度儀組成。油缸與閘門上端通過轉軸連接,油缸的伸縮帶動閘門的開閉。在油缸的伸縮過程中帶動鋼索伸縮,它們之間成一種函數關系,只要測量出鋼索的長度就能算出閘門的角度。 這種鋼索式開度儀運行的問題是: 1.由于傳感鋼索外置于油缸伸縮桿上,當水流中有漂浮物體經過閘門時,如樹枝、木板等,沖擊某側鋼索出現變形,大大影響測量精度。當有較大的漂浮物體沖擊時,鋼索有可能被沖斷。 2.外置鋼索 長時間浸泡在水質惡劣的水里,鋼索被銹蝕,經過一段時間,發生鋼索斷線,不能測量閘門油缸伸縮桿長度導致閘門自動控制系統不能正常工作,只能用手動控制,易因左右油缸阻力差異和目測誤差損壞閘門閘板。 3.鋼索在有腐蝕氣體的環境里,鋼索產生銹蝕影響測量精度且特別是北方地區冬夏溫差而增大傳感器誤差。 鑒于遠控制系統中的閘門開度儀的不足之處,采用新型非接觸測控制技術,可以彌補原閘門開度儀的不足。系統原理是當閘門在開閉運動過程中,閘門掃過的角度與油缸轉動的角度有一定的函數關系,測量出油缸的角度即可算出閘門的開閉角度,正是基于此中關系,可以采用測量油缸角度而遠離閘門的非接觸方法。 采用的傳感器為傾角傳感器,應用于電子數字水平儀,醫療,機械調平,角度測量和監視,汽車,起重機械的角度測量,輪船橫滾縱傾測量,軌道尺,電子羅盤傾斜補償,人體姿態測量等領域。 我們提供的傾角傳感器產品包括: 1、單軸、雙軸(前后和左右的傾斜角度測量) 2、測量范圍:0~±15°~±45°~±90°等 3、電源電壓:9~36VDC(可直接與車上蓄電池直接連接) 4、輸出信號:0~5V、4~20mA、RS232/485、CAN總線、開關量
上傳時間: 2013-11-01
上傳用戶:elinuxzj