亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

即時(shí)(shí)通信系統(tǒng)(tǒng)

  • FPGA和PC機(jī)之間串行通信對輸出正弦波頻率的控制

    1、 利用FLEX10的片內(nèi)RAM資源,根據(jù)DDS原理,設(shè)計(jì)產(chǎn)生正弦信號的各功能模塊和頂層原理圖; 2、 利用實(shí)驗(yàn)板上的TLC7259轉(zhuǎn)換器,將1中得到的正弦信號,通過D/A轉(zhuǎn)換,通過ME5534濾波后在示波器上觀察; 3、 輸出波形要求: 在輸入時(shí)鐘頻率為16KHz時(shí),輸出正弦波分辨率達(dá)到1Hz; 在輸入時(shí)鐘頻率為4MHz時(shí),輸出正弦波分辨率達(dá)到256Hz; 4、 通過RS232C通信,實(shí)現(xiàn)FPGA和PC機(jī)之間串行通信,從而實(shí)現(xiàn)用PC機(jī)改變頻率控制字,實(shí)現(xiàn)對輸出正弦波頻率的控制。

    標(biāo)簽: FPGA PC機(jī) 串行通信 輸出

    上傳時(shí)間: 2013-09-06

    上傳用戶:zhuimenghuadie

  • 基于T-S模糊故障樹的系統(tǒng)故障診斷研究

    針對傳統(tǒng)的故障樹分析法在故障診斷中存在的缺點(diǎn)和不足,文中將模糊理論運(yùn)用到故障診斷中,提出基于T-S的模糊故障樹的故障診斷法。介紹了T-S模糊模型及算法,建立了診斷系統(tǒng)的故障庫和推理機(jī)。使設(shè)備操作和維修人員可及時(shí)發(fā)現(xiàn)故障,降低系統(tǒng)故障率,提高了保障的能力。

    標(biāo)簽: T-S 模糊 故障診斷

    上傳時(shí)間: 2013-10-20

    上傳用戶:heheh

  • 通信系統(tǒng)中數(shù)字上變頻技術(shù)的研究與設(shè)計(jì)

    為了將通信系統(tǒng)中數(shù)字基帶信號調(diào)制到中頻信號上,采用數(shù)字上變頻技術(shù),通過對數(shù)字I、Q兩路基帶信號進(jìn)行FIR成形濾波、半帶插值濾波、數(shù)字混頻處理得到正交調(diào)制后的中頻信號,最后經(jīng)MATLAB仿真分析得到相應(yīng)的時(shí)域和頻域圖,來驗(yàn)證電路設(shè)計(jì)的有效性。

    標(biāo)簽: 通信系統(tǒng) 數(shù)字 變頻技術(shù)

    上傳時(shí)間: 2013-10-22

    上傳用戶:1318695663

  • Ku波段30W固態(tài)功率放大器

    本文敘述了研制的應(yīng)用于VSAT衛(wèi)星通信的Ku波段30W固態(tài)功率放大器(SSPA)。闡述了該固態(tài)功率放大器的方案構(gòu)成和關(guān)鍵部分的設(shè)計(jì),包括功率合成網(wǎng)絡(luò)、微帶.波導(dǎo)轉(zhuǎn)換的設(shè)計(jì);功率合成電路的設(shè)計(jì),特別是波導(dǎo)魔T的優(yōu)化設(shè)計(jì)。研制的30W固態(tài)功率放大器的主要性能為:中心頻率14.25GHz,帶寬500MHz,P.1dB輸出功率30W,大信號增益45dB,帶內(nèi)波動小于5dB。

    標(biāo)簽: 30W Ku波段 固態(tài)功率 放大器

    上傳時(shí)間: 2013-11-22

    上傳用戶:robter

  • 模擬無繩電話電路分析

    無繩電話機(jī)由主機(jī)(座機(jī)或母機(jī))和副機(jī)(即手機(jī)或子機(jī))構(gòu)成,采用無線方式連接,利用無線電波進(jìn)行通信。使用時(shí)將主機(jī)接入市話網(wǎng)內(nèi),用戶可以在一定空間內(nèi)自由移動,隨時(shí)實(shí)現(xiàn)正常的尋呼和通話功能。

    標(biāo)簽: 模擬 無繩電話 電路分析

    上傳時(shí)間: 2013-10-30

    上傳用戶:jiangshandz

  • 一階RC電路的暫態(tài)過程

      一、實(shí)驗(yàn)?zāi)康?  1.觀察RC電路充放電過程,掌握時(shí)間常數(shù)的測量方法。   2.研究RC積分電路和微分電路的特點(diǎn)。   二、實(shí)驗(yàn)任務(wù)   1.觀察記錄圖示電路的放電過程。求出時(shí)間常數(shù)τ。   2.設(shè)計(jì)時(shí)間常數(shù)τ為1ms的RC積分電路和微分電路,用示波器觀察在脈沖信號源周期不同(與時(shí)間常數(shù)相比,即輸入脈沖寬度T<<τ、T=τ、T>>τ)時(shí)的電路輸出,記錄輸入、輸出波形。

    標(biāo)簽: RC電路 暫態(tài)過程

    上傳時(shí)間: 2013-10-25

    上傳用戶:baitouyu

  • 時(shí)鐘分相技術(shù)應(yīng)用

    摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類號: TN 79  文獻(xiàn)標(biāo)識碼:A   文章編號: 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個電路的 性能。尤其現(xiàn)代電子系統(tǒng)對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問 題。 1) 時(shí)鐘的快速電平切換將給電路帶來的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對高頻時(shí)鐘信號的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號的一個周期按相位來分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時(shí)來達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個低頻、高精度的 晶體作為時(shí)鐘源, 將這個低頻時(shí)鐘通過一個鎖相環(huán)(PLL ) , 獲得一個較高頻率的、比較純凈的時(shí)鐘, 對這個時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個相位 數(shù)據(jù), 與其同步的時(shí)鐘信號并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數(shù)據(jù) 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時(shí)鐘信號, 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統(tǒng)設(shè)計(jì)帶來很多的困擾。 我們在這里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個16MHz 晶振作為時(shí)鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個。選擇的依據(jù)是: 在每個數(shù)據(jù)幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個時(shí)鐘鎖存后的數(shù)據(jù)在這個指定位置最先檢測出這 個KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個判別原理, 我們設(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(Aperture J itters) , 無法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對模擬信號進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經(jīng)過 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點(diǎn)依次相差90°相位。通過存儲器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問題, 降低了系統(tǒng)設(shè)計(jì)的難度。

    標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用

    上傳時(shí)間: 2013-12-17

    上傳用戶:xg262122

  • 電感和磁珠的區(qū)別及應(yīng)用場合和作用

    磁珠由氧磁體組成,電感由磁心和線圈組成,磁珠把交流信號轉(zhuǎn)化為熱能,電感把交流存儲起來,緩慢的釋放出去。 磁珠對高頻信號才有較大阻礙作用,一般規(guī)格有100歐/100mMHZ ,它在低頻時(shí)電阻比電感小得多。電感的等效電阻可有Z=2X3.14xf 來求得。 鐵氧體磁珠 (Ferrite Bead) 是目前應(yīng)用發(fā)展很快的一種抗干擾元件,廉價(jià)、易用,濾除高頻噪聲效果顯著。 在電路中只要導(dǎo)線穿過它即可(我用的都是象普通電阻模樣的,導(dǎo)線已穿過并膠合,也有表面貼裝的形式,但很少見到賣的)。當(dāng)導(dǎo)線中電流穿過時(shí),鐵氧體對低頻電流幾乎沒有什么阻抗,而對較高頻率的電流會產(chǎn)生較大衰減作用。高頻電流在其中以熱量形式散發(fā),其等效電路為一個電感和一個電阻串聯(lián),兩個元件的值都與磁珠的長度成比例。 磁珠種類很多,制造商應(yīng)提供技術(shù)指標(biāo)說明,特別是磁珠的阻抗與頻率關(guān)系的曲線。 有的磁珠上有多個孔洞,用導(dǎo)線穿過可增加元件阻抗(穿過磁珠次數(shù)的平方),不過在高頻時(shí)所增加的抑制噪聲能力不可能如預(yù)期的多,而用多串聯(lián)幾個磁珠的辦法會好些。 鐵氧體是磁性材料,會因通過電流過大而產(chǎn)生磁飽和,導(dǎo)磁率急劇下降。大電流濾波應(yīng)采用結(jié)構(gòu)上專門設(shè)計(jì)的磁珠,還要注意其散熱措施。 鐵氧體磁珠不僅可用于電源電路中濾除高頻噪聲(可用于直流和交流輸出),還可廣泛應(yīng)用于其他電路,其體積可以做得很小。特別是在數(shù)字電路中,由于脈沖信號含有頻率很高的高次諧波,也是電路高頻輻射的主要根源,所以可在這種場合發(fā)揮磁珠的作用。 鐵氧體磁珠還廣泛應(yīng)用于信號電纜的噪聲濾除。 以常用于電源濾波的HH-1H3216-500為例,其型號各字段含義依次為:HH 是其一個系列,主要用于電源濾波,用于信號線是HB系列;1 表示一個元件封裝了一個磁珠,若為4則是并排封裝四個的;H 表示組成物質(zhì),H、C、M為中頻應(yīng)用(50-200MHz),T低頻應(yīng)用(<50MHz),S高頻應(yīng)用(>200MHz);3216 封裝尺寸,長3.2mm,寬1.6mm,即1206封裝;500 阻抗(一般為100MHz時(shí)),50 ohm。 其產(chǎn)品參數(shù)主要有三項(xiàng):阻抗[Z]@100MHz (ohm) : Typical 50, Minimum 37;直流電阻DC Resistance (m ohm): Maximum 20;額定電流Rated Current (mA): 2500. 磁珠有很高的電阻率和磁導(dǎo)率, 他等效于電阻和電感串聯(lián), 但電阻值和電感值都隨頻率變化。 他比普通的電感有更好的高頻濾波特性,在高頻時(shí)呈現(xiàn)阻性,所以能在相當(dāng)寬的頻率范圍內(nèi)保持較高的阻抗,從而提高調(diào)頻濾波效果。 磁珠主要用于高頻隔離,抑制差模噪聲等。

    標(biāo)簽: 電感

    上傳時(shí)間: 2013-11-05

    上傳用戶:貓愛薛定諤

  • 雙T網(wǎng)絡(luò)資料

    雙T網(wǎng)絡(luò)

    標(biāo)簽: 雙T網(wǎng)絡(luò)

    上傳時(shí)間: 2013-10-20

    上傳用戶:txfyddz

  • 簡述PCB線寬和電流關(guān)系

      PCB線寬和電流關(guān)系公式   先計(jì)算Track的截面積,大部分PCB的銅箔厚度為35um(即 1oz)它乘上線寬就是截面積,注意換算成平方毫米。 有一個電流密度經(jīng)驗(yàn)值,為15~25安培/平方毫米。把它稱上截面積就得到通流容量。   I=KT(0.44)A(0.75), 括號里面是指數(shù),   K為修正系數(shù),一般覆銅線在內(nèi)層時(shí)取0.024,在外層時(shí)取0.048   T為最大溫升,單位為攝氏度(銅的熔點(diǎn)是1060℃)   A為覆銅截面積,單位為square mil.   I為容許的最大電流,單位為安培。   一般 10mil=0.010inch=0.254mm 1A , 250mil=6.35mm 8.3A ?倍數(shù)關(guān)系,與公式不符 ?  

    標(biāo)簽: PCB 電流

    上傳時(shí)間: 2013-10-11

    上傳用戶:ls530720646

主站蜘蛛池模板: 常宁市| 鄢陵县| 通渭县| 龙岩市| 梧州市| 玛纳斯县| 甘洛县| 临漳县| 成武县| 石屏县| 东乡族自治县| 古丈县| 松溪县| 南和县| 胶南市| 南皮县| 栾川县| 万山特区| 宁南县| 鄂尔多斯市| 蓬溪县| 资溪县| 京山县| 府谷县| 观塘区| 托克逊县| 白朗县| 自贡市| 瑞金市| 新乡县| 崇左市| 富阳市| 图们市| 满洲里市| 库伦旗| 康定县| 高淳县| 柯坪县| 济南市| 连云港市| 独山县|