在航電系統維護過程中,為解決定位故障的效率和降低維修成本等問題,提出了基于ICD(Interface Control Document,接口控制文件)的1553B總線的信息監控系統模型。該系統運用數據采集卡對總線中傳輸的信號有無失真、偏差等電氣特性進行檢測,并使用1553B通訊卡通過測控軟件LabWindows/CVI編程與ICD數據庫的動態鏈接,實現總線信息的解析和故障的判斷。與傳統的維護過程相比,這種模型能夠從信號的電氣特性以及信息的解析等全方位的去檢測判斷故障的來源,并且能夠廣泛在其他1553B總線系統內擴展應用。驗證表明該監控系統可以對總線信息進行快速有效地監測分析,能滿足應用需求。
Abstract: In the process of avionics system maintenance, to solve the problems such as improving the efficiency of fast orientation to troubles and reducing maintenance cost, system of 1553B bus information monitor model based on ICD was proposed. The system observed whether the data which transmitted on the bus appear distortion and deviation by using data acquisition card. And using 1553B communication card programming of the measure software LabWindows/CVI and the dynamic linking of ICD database, message analysis and fault estimation could be realized. Compared with traditional maintenance, this model can all-dimensionally detect and analyze the source of faults from both electrical characteristics of the signal and message analysis, and it can be widely applied in the other 1553B system. Experiment shown that this monitor system can effectively detect and analyze the bus message and can meet the application requirements.
針對目前汽車追尾事件頻發問題,提出一種防汽車車前和車后追尾的安全裝置設計。該設計以高性能、低功耗的8位AVR微處理器ATmega8L為核心,結合霍爾式車速傳感器、激光雷達測距裝置和MMA7260QT加速度傳感器,能夠兼顧車前和車后,摒棄以往設計中只考慮車前或車后單一性缺點,尤其適用于高速、夜晚或新手行車。
Abstract:
Aiming at the high frequency of vehicle rear-end collision,a safe device design of anti-vehicle rear-end collision is presented.In the design,the high-performance,low-power8-bit AVR microprocessor ATmega8L is utilized as a core combined with Hall-type speed sensor,laser-radar ranging devices and the acceleration sensor MMA7260QT.The design considers both the front and back of a car,and overcomes the drawbacks of former designs in which only the front or the back of the car is considered,so it is especially suitable for high-speed,night or the beginner’s driving.