高壓直流電源廣泛應(yīng)用于醫(yī)用X射線機(jī),工業(yè)靜電除塵器等設(shè)備。傳統(tǒng)的工頻高壓直流電源體積大、重量重、變換效率低、動態(tài)性能差,這些缺點限制了它的進(jìn)一步應(yīng)用。而高頻高壓直流電源克服了前者的缺點,已成為高壓大功率電源的發(fā)展趨勢。本文對應(yīng)用在高輸出電壓大功率場合的開關(guān)電源進(jìn)行研究,對主電路拓?fù)洹⒖刂撇呗浴⒐に嚱Y(jié)構(gòu)等方面做出詳細(xì)討論,提出實現(xiàn)方案。 高壓變壓器由于匝比很大,呈現(xiàn)出較大的寄生參數(shù),如漏感和分布電容,若直接應(yīng)用在PWM變換器中,漏感的存在會產(chǎn)生較高的電壓尖峰,損壞功率器件,分布電容的存在會使變換器有較大的環(huán)流,降低了變換器的效率。本文選用具有電容型濾波器的LCC諧振變換器為主電路拓?fù)洌梢岳酶邏鹤儔浩髦新└泻头植茧娙葑鳛橹C振元件,減少了元件的數(shù)量,從而減小了變換器的體積。 LCC諧振變換器采用變頻控制策略,可以工作在電感電流連續(xù)模式(CCM)和電感電流斷續(xù)模式(DCM),本文對這兩種工作模式進(jìn)行詳細(xì)討論。針對CCM下的LCC諧振變換器,本文分析其工作原理,用基波近似法推導(dǎo)出變換器的穩(wěn)態(tài)模型,給出一種詳盡的設(shè)計方法,可以保證所有開關(guān)管在全負(fù)載范圍內(nèi)實現(xiàn)零電壓開關(guān),減小電流應(yīng)力和開關(guān)頻率的變化范圍,并進(jìn)行仿真驗證。基于該變換器,研制出輸出電壓為41kV,功率為23kW的高頻高壓電源,實驗結(jié)果驗證了分析與設(shè)計的正確性。 針對DCM下的LCC諧振變換器,本文分析其工作原理,該變換器可以實現(xiàn)零電流開關(guān),有效地減小IGBT拖尾電流造成的關(guān)斷損耗。論文通過電路狀態(tài)方程推導(dǎo)出變換器的電壓傳輸比特性,在此基礎(chǔ)上對主電路參數(shù)進(jìn)行設(shè)計,并進(jìn)行仿真驗證。基于該變換器,研制出輸出電壓為66kV,功率為72kW的高頻高壓電源,實驗結(jié)果表明了方案的可行性。
上傳時間: 2013-04-24
上傳用戶:edrtbme
在實際應(yīng)用中,對永磁同步電機(jī)控制精度的要求越來越高。尤其是在機(jī)器人、航空航天、精密電子儀器等對電機(jī)性能要求較高的領(lǐng)域,系統(tǒng)的快速性、穩(wěn)定性和魯棒性能好壞成為決定永磁同步電機(jī)性能優(yōu)劣的重要指標(biāo)。傳統(tǒng)電機(jī)系統(tǒng)通常采用PID控制,其本質(zhì)上是一種線性控制,若被控對象具有非線性特性或有參變量發(fā)生變化,會使得線性常參數(shù)的PID控制器無法保持設(shè)計時的性能指標(biāo);在確定PID參數(shù)的過程中,參數(shù)整定值是具有一定局域性的優(yōu)化值,并不是全局最優(yōu)值。實際電機(jī)系統(tǒng)具有非線性、參數(shù)時變及建模過程復(fù)雜等特點,因此常規(guī)PID控制難以從根本上解決動態(tài)品質(zhì)與穩(wěn)態(tài)精度的矛盾。永磁同步電機(jī)是典型的多變量、參數(shù)時變的非線性控制對象。先進(jìn)控制方法(諸如智能控制、優(yōu)化算法等)研究應(yīng)用的發(fā)展與深入,為控制復(fù)雜的永磁同步電機(jī)系統(tǒng)開辟了嶄新的途徑。由于先進(jìn)控制方法擺脫了對控制對象模型的依賴,能夠在處理不精確性和不確定性問題中有可處理性、魯棒性,因而將其引入永磁同步電機(jī)控制已成為一個必然的趨勢。本文根據(jù)系統(tǒng)實現(xiàn)目標(biāo)的不同,選取相應(yīng)的先進(jìn)控制方法,并與PID控制相結(jié)合,對永磁同步電機(jī)各方面性能進(jìn)行有針對性的優(yōu)化,最終使其控制精度得到顯著的提高。為達(dá)到對永磁同步電機(jī)進(jìn)行性能優(yōu)化的研究目的,文中首先探討了正弦波永磁同步電機(jī)和方波永磁同步電機(jī)的運行特點及控制機(jī)理,通過建立數(shù)學(xué)模型,對相應(yīng)的控制系統(tǒng)進(jìn)行了整體分析。針對永磁同步電機(jī)非線性、強(qiáng)耦合的特點,設(shè)計了矢量控制方式下的永磁同步電機(jī)閉環(huán)反饋控制系統(tǒng)。結(jié)合常規(guī)PID控制,將模糊控制、遺傳算法、神經(jīng)網(wǎng)絡(luò)和人工免疫等多種先進(jìn)控制方法應(yīng)用于永磁同步電機(jī)調(diào)速系統(tǒng)、伺服系統(tǒng)和同步傳動系統(tǒng)的控制器設(shè)計中,以滿足不同控制系統(tǒng)對電機(jī)動、靜態(tài)性能的要求以及對調(diào)速性能或跟隨性能的側(cè)重。實驗結(jié)果表明,采用先進(jìn)控制方法的永磁同步電機(jī)具有較好的動態(tài)性能、抗擾動能力以及較強(qiáng)的魯棒性能;與傳統(tǒng)PID控制相比,系統(tǒng)的控制精度得到了明顯提高。研究結(jié)果驗證了先進(jìn)控制方法應(yīng)用于永磁同步電機(jī)性能優(yōu)化的有效性和實用性。
標(biāo)簽: 先進(jìn)控制 永磁同步電機(jī) 性能優(yōu)化
上傳時間: 2013-04-24
上傳用戶:shinesyh
永磁同步電機(jī)(PMSM)因其無需勵磁電流、運行效率和功率密度高,在交流調(diào)速系統(tǒng)中被廣泛的應(yīng)用,但PMSM高性能的矢量控制需要精確的轉(zhuǎn)子位置和速度信號來實現(xiàn)磁場定向。在傳統(tǒng)控制中,一般采用機(jī)械式傳感器來檢測轉(zhuǎn)子位置和轉(zhuǎn)速,但是機(jī)械式傳感器存在諸如成本高、可靠性低、不易維護(hù)等問題,使得無速度/位置傳感器控制技術(shù)成為永磁同步電機(jī)控制中的熱點問題。雖然目前已有較多的研究成果,但是所采用的方法大多是基于電機(jī)基波方程的分析,一般不適用于低速甚至零速,并且對電機(jī)參數(shù)較為敏感,魯棒性差。本文正是為了解決這個問題,而采用高頻信號注入法實現(xiàn)轉(zhuǎn)子位置估算,這種方法適合于低速甚至零速,對電機(jī)參數(shù)的變化不敏感,魯棒性強(qiáng)。主要做了如下的工作: 首先詳細(xì)介紹了永磁同步電機(jī)三種基本結(jié)構(gòu),在建立了旋轉(zhuǎn)坐標(biāo)系下永磁同步電機(jī)數(shù)學(xué)模型的基礎(chǔ)上敘述了其矢量控制原理,分析了各種現(xiàn)有的永磁同步電機(jī)無速度/位置傳感器控制策略;其次在永磁同步電機(jī)矢量控制的基礎(chǔ)上詳細(xì)討論了旋轉(zhuǎn)高頻電壓信號注入法與脈振高頻電壓信號注入法提取轉(zhuǎn)子位置的基本原理,并在此基礎(chǔ)上利用MATLAB/SIMULINK仿真工具建立了整個永磁同步電機(jī)無速度/位置傳感器矢量控制系統(tǒng)的模型,進(jìn)行了仿真研究,仿真結(jié)果驗證了控制算法的正確性。最后利用TI公司推出的數(shù)字信號處理器DSP芯片TMS320F2812,實現(xiàn)了基于脈振高頻信號注入法的永磁同步電機(jī)無速度/位置傳感器的實驗運行,實驗結(jié)果驗證了這種方法適合于低速運行,對電機(jī)參數(shù)的變化不敏感,魯棒性強(qiáng)。
標(biāo)簽: 高頻信號 永磁同步電機(jī) 無傳感器
上傳時間: 2013-06-06
上傳用戶:Neal917
隨著家用空調(diào)的普及應(yīng)用,空調(diào)已日漸成為耗能大戶。我國經(jīng)濟(jì)建設(shè)多年來高速發(fā)展,正面臨能源日益緊張的問題,由于空調(diào)節(jié)能尚有空間,因此人們普遍關(guān)注空調(diào)節(jié)能技術(shù)。在家用空調(diào)的各種節(jié)能技術(shù)中,直流壓縮機(jī)變頻驅(qū)動是發(fā)展的主流方向。從驅(qū)動方式上看,直流壓縮機(jī)可以采用方波控制或矢量控制。與方波控制相比,矢量控制的空調(diào)直流壓縮機(jī)具有噪聲低、振動小、效率高等特點,更加符合節(jié)能和環(huán)保的發(fā)展方向。 本文主要研究了適用于空調(diào)壓縮機(jī)負(fù)載的無轉(zhuǎn)子位置傳感器永磁同步電機(jī)矢量控制方法。首先從電機(jī)的基本方程入手,詳細(xì)推導(dǎo)了永磁同步電機(jī)矢量控制的數(shù)學(xué)模型。詳細(xì)分析了各種電流控制策略特點,提出了采用適合直流壓縮機(jī)驅(qū)動的MTPA控制方式。 其次提出了具有凸極效應(yīng)的壓縮機(jī)永磁同步電機(jī)的一種簡化模型,得到了適用于IPMSM的滑模觀測器,解決了IPMSM在αβ坐標(biāo)系中應(yīng)用滑模觀測器困難的問題。針對壓縮機(jī)運行特點,采用全維狀態(tài)觀測器方法,實現(xiàn)IPMSM反電動勢的觀測,根據(jù)反電動勢計算出電機(jī)轉(zhuǎn)子位置和轉(zhuǎn)速,實現(xiàn)了無傳感器矢量控制。本文詳細(xì)分析了全維狀態(tài)觀測器的極點配置方法,通過將四個極點配置在相同位置,簡輕了計算量,也便于實現(xiàn)。 第三,由于反電動勢估算法在電機(jī)低轉(zhuǎn)速下不能正確估算轉(zhuǎn)子位置,無法正常閉環(huán)起動,本文提出了一種簡單的用于直流壓縮機(jī)的起動方法,實現(xiàn)了壓縮機(jī)的可靠起動。同時在深入分析電機(jī)等效模型的基礎(chǔ)上,給出了一種簡單的電機(jī)參數(shù)測量方法,通過簡單測量和計算,得到系統(tǒng)實現(xiàn)無傳感器永磁同步電機(jī)矢量控制所需的電感、電阻及反電動勢系數(shù)等關(guān)鍵參數(shù)。 最后通過MATLAB/Simulimk7.1仿真軟件對基于滑模觀測器和基于全維觀測器的永磁同步電機(jī)矢量控制方法進(jìn)行了仿真驗證,設(shè)計了以TMS320F2403數(shù)字信號處理器為控制核心的直流壓縮機(jī)矢量控制實驗平臺,并進(jìn)行了大量的實驗驗證。仿真及實驗結(jié)果證明了本文理論分析和所提方法的正確性,并已應(yīng)用于實際的直流壓縮機(jī)矢量控制系統(tǒng)。
標(biāo)簽: 空調(diào)壓縮機(jī) 無傳感器 方法研究
上傳時間: 2013-06-13
上傳用戶:xuanchangri
隨著通訊技術(shù)和電力系統(tǒng)的發(fā)展,對通訊用電源和電力操作電源的性能、重量、體積、效率和可靠性都提出了更高的要求。而應(yīng)用于中大功率場合的全橋變換器與軟開關(guān)的結(jié)合解決了這一問題。因此,對其進(jìn)行研究設(shè)計具有十分重要的意義。 首先,論文闡述PWM DC/DC變換器的軟開關(guān)技術(shù),且根據(jù)移相控制PWM全橋變換器的主電路拓?fù)浣Y(jié)構(gòu),選定適合于本論文的零電壓開關(guān)軟開關(guān)技術(shù)的電路拓?fù)洌ζ浠竟ぷ髟磉M(jìn)行闡述,同時給出ZVS軟開關(guān)的實現(xiàn)策略。 其次,對選定的主電路拓?fù)浣Y(jié)構(gòu)進(jìn)行電路設(shè)計,給出主電路中各參量的設(shè)計及參數(shù)的計算方法,包括輸入、輸出整流橋及逆變橋的器件的選型,輸入整流濾波電路的參數(shù)設(shè)計、高頻變壓器及諧振電感的參數(shù)設(shè)計以及輸出整流濾波電路的參數(shù)設(shè)計。 然后,論述移相控制電路的形成,對移相控制芯片進(jìn)行選擇,同時對移相控制芯片UC3875進(jìn)行詳細(xì)的分析和設(shè)計。對主功率管MOSFET的驅(qū)動電路進(jìn)行分析和設(shè)計。 最后,基于理論計算,對系統(tǒng)主電路進(jìn)行仿真,研究其各部分設(shè)計的參數(shù)是否合乎實際電路。搭建移相控制ZV SDC/DC全橋變換器的實驗平臺,在系統(tǒng)實驗平臺上做了大量的實驗。 實驗結(jié)果表明,論文所設(shè)計的DC/DC變換器能很好的實現(xiàn)軟開關(guān),提高效率,使輸出電壓得到穩(wěn)定控制,最后通過調(diào)整移相控制電路,可實現(xiàn)直流輸出的寬范圍調(diào)整,具有很好的工程實用價值。
上傳時間: 2013-08-04
上傳用戶:zklh8989
近年來在運動控制領(lǐng)域三電平中壓變頻器的開發(fā)研究得到了廣泛關(guān)注,三電平逆變器使得電壓型逆變器的大容量化、高性能化成為可能,研究和開發(fā)三電平逆變器,無論在技術(shù)上還是在實際應(yīng)用上都有十分重要的意義。 本文首先論述了三電平逆變器的原理,詳細(xì)分析了一種控制策略—空間電壓矢量法,給出PWM波的計算公式和開關(guān)動作次序,并仿真出波形。 其次闡述了三電平逆變器的主電路構(gòu)成、功率器件MOSFET的驅(qū)動技術(shù)和基于DSP2407A控制系統(tǒng)硬件電路設(shè)計,并據(jù)此設(shè)計出了一套小容量三電平逆交器實驗裝置。 最后介紹了三電平空間電壓矢量控制算法的實現(xiàn)和軟件設(shè)計,給出了實驗裝置的運行結(jié)果,并分析了設(shè)計中存在的問題。
上傳時間: 2013-04-24
上傳用戶:tfyt
大功率電力電子裝置的廣泛應(yīng)用使電力系統(tǒng)無功功率補(bǔ)償和諧波污染問題日趨嚴(yán)重,動態(tài)無功功率補(bǔ)償和諧波抑制成為現(xiàn)代電力傳動領(lǐng)域研究的熱點。傳統(tǒng)補(bǔ)償技術(shù)由于主控制器運算能力的限制,難以對實時信號進(jìn)行有效分析,影響了補(bǔ)償效果。而DSP計算速度快,能夠?qū)崿F(xiàn)復(fù)雜的數(shù)字信號處理或數(shù)字實時控制。本文針對礦井直流提升機(jī)的無功補(bǔ)償問題,設(shè)計了一種基于DSP的TCR型動態(tài)無功補(bǔ)償器,以穩(wěn)定電網(wǎng)電壓、減小電壓波動,提高功率因數(shù)。 本文綜述了無功補(bǔ)償技術(shù)的國內(nèi)外研究概況、水平和發(fā)展趨勢,基于 MATLAB 對電力電子裝置諧波源進(jìn)行了諧波分析與仿真,分析和介紹了 TCR 的無功補(bǔ)償原理及瞬時無功理論,確定了無功補(bǔ)償系統(tǒng)主電路及其控制系統(tǒng),提出了系統(tǒng)的總體方案。 本設(shè)計選用 TMS320F2812 DSP 芯片作為主處理器,設(shè)計了信號輸入、濾波放大和信號調(diào)理等 DSP 外圍硬件電路;軟件方面采用模塊化設(shè)計,編寫了軟件流程圖,給出了部分程序代碼。 本文基于MATLAB軟件對無功補(bǔ)償控制系統(tǒng)的補(bǔ)償效果進(jìn)行了模擬仿真。仿真結(jié)果表明:系統(tǒng)線電壓、負(fù)載無功功率和TCR無功功率等在兩個周期內(nèi)達(dá)到穩(wěn)定,系統(tǒng)線電壓波動小于3%,系統(tǒng)線電壓和系統(tǒng)線電流中僅含有較少量的5次、7次和 11 次諧波,總諧波畸變率滿足《公用電網(wǎng)諧波》標(biāo)準(zhǔn)的要求,為在煤礦中的實際應(yīng)用提供了理論基礎(chǔ)。
上傳時間: 2013-07-24
上傳用戶:PresidentHuang
高壓變頻調(diào)速技術(shù)節(jié)能效果顯著,多電平逆變器是其常用的一種電路拓?fù)湫问健H娖侥孀兤髂芙档凸β势骷蛪阂蟆⒔档椭C波含量,普遍地采用電壓空間矢量脈寬調(diào)制的控制策略。將DSP數(shù)字控制技術(shù)應(yīng)用于三電平逆變器不僅簡化了系統(tǒng)的硬件結(jié)構(gòu),提高系統(tǒng)性能,還可以實現(xiàn)系統(tǒng)的優(yōu)化控制。 本文首先簡要介紹了三電平逆變器的拓?fù)浣Y(jié)構(gòu)和控制策略,并闡述了二極管箝位式三電平逆變器電路結(jié)構(gòu)和電壓空間矢量脈寬調(diào)制控制策略的實現(xiàn)方法。在此基礎(chǔ)上,通過對逆變器的工作過程分析,建立了逆變器的數(shù)學(xué)模型。并提出了一種能控制逆變器直流側(cè)電容中點電位平衡并且能降低開關(guān)損耗的電壓空間矢量脈寬調(diào)制方法。 本文在綜述人工神經(jīng)網(wǎng)絡(luò)技術(shù)的基礎(chǔ)上,提出一種基于復(fù)合人工神經(jīng)網(wǎng)絡(luò)的電壓空間矢量脈寬調(diào)制算法,充分利用人工神經(jīng)網(wǎng)絡(luò)的快速并行處理能力、學(xué)習(xí)能力,縮短了計算時間,降低了由控制延時引起的諧波成分。最后在MATIAB/Simulink環(huán)境下,結(jié)合ANN工具箱建立了仿真模型。仿真結(jié)果證明了基于復(fù)合人工神經(jīng)網(wǎng)絡(luò)算法的可行性。 本文進(jìn)行了三電平逆變器的主電路、開關(guān)器件驅(qū)動電路、電流電壓檢測電路和保護(hù)電路等的設(shè)計。根據(jù)三電平逆變器主電路功率開關(guān)多,驅(qū)動信號不能共地的特點,本文設(shè)計一種利用光耦隔離驅(qū)動功率開關(guān)器件的驅(qū)動保護(hù)電路,降低電磁干擾,并在過流等異常情況下實時保護(hù)功率開關(guān)器件。最后以TMS320LF2407DSP為數(shù)字控制平臺,實現(xiàn)了三電平逆變器的電壓空間矢量脈寬調(diào)制控制策略。
上傳時間: 2013-07-07
上傳用戶:natopsi
隨著永磁同步電機(jī)在許多領(lǐng)域得到廣泛應(yīng)用,對永磁同步電機(jī)的研究成為一種必然的發(fā)展趨勢,具有實際的意義和價值。本文采用TI公司專用于電機(jī)控制的TMS320F240型數(shù)字信號處理器作為核心,開發(fā)了全數(shù)字化的永磁同步電機(jī)矢量控制調(diào)速系統(tǒng)的軟件,并在改進(jìn)的清華電機(jī)控制試驗平臺上進(jìn)行了帶機(jī)試驗,結(jié)果驗證了系統(tǒng)設(shè)計方案的可行性。 本文首先深入的研究了永磁同步電機(jī)的矢量控制理論,建立了永磁同步電機(jī)數(shù)學(xué)模型,并在此基礎(chǔ)上討論了永磁同步電機(jī)的矢量控制調(diào)速方案;然后,以清華電機(jī)控制試驗平臺為基礎(chǔ)介紹了控制系統(tǒng)硬件結(jié)構(gòu),其中主要論述了控制電路各部分及外圍輔助電路的設(shè)計和調(diào)試。在硬件的基礎(chǔ)上,軟件采用匯編語言編程,實現(xiàn)了轉(zhuǎn)速和電流雙閉環(huán)矢量控制,并給出了系統(tǒng)主程序和PWM下溢中斷處理程序流程圖,永磁同步電機(jī)矢量控制的主要控制策略如轉(zhuǎn)子相位的初始化、電流采樣、速度位置采樣、矢量坐標(biāo)變換、sinθ、cosθ值生成、PI調(diào)節(jié)、空間電壓矢量(SVPWM)模塊等都是在PWM下溢中斷服務(wù)子程序中完成的。為達(dá)到數(shù)值的統(tǒng)一,對軟件中所采用的參數(shù)進(jìn)行了定標(biāo)。最后在基于硬件平臺的基礎(chǔ)上,對軟件進(jìn)行帶機(jī)調(diào)試,試驗表明電機(jī)能快速響應(yīng)并跟蹤給定轉(zhuǎn)速,從而證明整個系統(tǒng)設(shè)計的正確性。 另外,本文還在MATLAB/SIMULINK的基礎(chǔ)上,建立采用模糊神經(jīng)網(wǎng)絡(luò)控制器的永磁同步電機(jī)的仿真模型,仿真結(jié)果表明:該控制系統(tǒng)具有較好的位置響應(yīng)和抗干擾能力強(qiáng)。 在論文的最后,對全文的工作做了總結(jié)。
標(biāo)簽: DSP 永磁同步電動機(jī) 矢量控制系統(tǒng)
上傳時間: 2013-07-27
上傳用戶:er1219
本論文針對6kV/400kW三相異步電動機(jī)的中壓變頻器試驗裝置,從分析目前中壓變頻器常用的主回路拓?fù)淙胧郑敿?xì)闡述并分析了本文研究的單元串聯(lián)型中壓變頻器控制系統(tǒng)。 本文首先從理論上分析了多單元串聯(lián)型中壓變頻器脈寬控制原理。然后,把一種高性能的V/f控制方案引入中壓變頻器控制系統(tǒng)。通過矢量補(bǔ)償定子壓降,進(jìn)行轉(zhuǎn)差補(bǔ)償和對電機(jī)電流進(jìn)行限制控制,實現(xiàn)了具有很好的低頻性能并具有防“跳閘”等功能的V/f控制方案。 同時,本文將Siemens公司通用變頻器的時隙、連接紙的概念運用到中壓變頻器控制領(lǐng)域。增加了系統(tǒng)的可變性,自由性和方便性。設(shè)計了具有系統(tǒng)組態(tài)功能的模塊化軟件,其中著重對控制軟件中的幾個重要功能進(jìn)行了分析討論。這些重要功能模塊有:控制字和狀態(tài)字、順序控制、V/f曲線、給定積分器、基于電壓補(bǔ)償?shù)妮敵鲎詣臃€(wěn)壓算法、通訊功能等。 中壓變頻器在實驗室設(shè)計為6kV/22kW試驗系統(tǒng),實際設(shè)計為6kV/400kW的變頻系統(tǒng)裝置。本文給出了實驗室調(diào)試結(jié)果及分析。實驗結(jié)果表明,該中壓變頻器能夠安全、穩(wěn)定地運行。
上傳時間: 2013-04-24
上傳用戶:mingaili888
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1