幾乎所有電源電路中,都離不開磁性元器件 電感器或變壓器。例如在輸入和輸出端采用電感濾除開關波形的諧波;在諧振變換器中用電感與電容產生諧振以獲得正弦波電壓和電流;在緩沖電路中,用電感限制功率器件電流變化率;在升壓式變換器中,儲能和傳輸能量;有時還用電感限制電路的瞬態電流等。而變壓器用來將兩個系統之間電氣隔離,電壓或阻抗變換,或產生相位移(3 相 Δ—Y 變換),存儲和傳輸能量(反激變壓器),以及電壓和電流檢測(電壓和電流互感器)。可以說磁性元件是電力電子技術最重要的組成部分之一。
上傳時間: 2022-05-14
上傳用戶:
電子產品的設計一般先從功能框圖開始,然后細化到原理圖,還要經過很復雜和繁瑣的調試驗證過程,最終才能完成。為了驗證原理圖的正確性,都要焊接實驗板(樣板),或使用易于插件的“面包板”,每個節點都必須正確和可靠,連接或焊接過程都是細致而耗時的工作,在器件很多時幾乎是不可能完成的任務,而每次調整都要打樣,耗時長而成本高,在設計集成電路時更是如此,急需在制造之前驗證集成電路的功能。這種現實需要就迫使人們想用他辦法來解決。 根據電路理論,人們可以建立起節點方程和回路方程,通過解這些方程組成的方程組就可以得到結果,也就是說可以通過計算來獲得電路的工作情況。但包含電感、電容等器件的電路形成的是一組微分方程組,人工計算依然是累人的活,而計算機則可以大展身手,通過其強大的存儲、計算和圖形顯示能力就能輕松完成,很快得到結果。基于這種思想,人們開發出電路仿真軟件,通過快速的仿真,代替耗時且累人的反復調測,提高設計速度和效率,也節省了時間和成本。最早、最出色的仿真軟件就是SPICE。SPICE是Simulation Program with Integrated Circuits Emphasis的縮寫,由美國加利福尼亞大學伯克利(Berkeley)分校的電工和計算機科學系開發,骨干是Ron Rohrer和Larry Nagel,開始是使用FORTRAN語言設計的仿真軟件,用于快速可靠地驗證集成電路中的電路設計以及預測電路的性能。第一個版本SPICE1于1971年推出,通過圍繞晶體管建立電流和電壓變量來仿真電路的行為,稱為模擬仿真或電路級仿真,且只能模擬100個晶體管的電路。1975年SPICE2發布,開始正式實用化,1983年發布的SPICE2G.6在很長時間內都是工業標準,它包含超過15000條FORTRON語句,運行于多種中小型計算機上。1985年SPICE3推出,轉為用C語言開發,易于運行于UNIX工作站,還增加了圖形后處理工具和原理圖工具,提供了更多的器件模型和分析功能。在1988年SPICE被定為美國國家標準。Spice仿真器采用修改的節點分析法來建立電路方程組,提供非線性直流分析,非線性瞬態分析(實域分析)和線性小信號分析(頻域分析)等。其中瞬態分析是最費時的驗證方法,通常是利用數值積分法把非線性微分方程變成一組代數方程組,然后用高斯消去法來求解,因為這些線性方程僅僅在積分時刻點是有效的,而隨著仿真器進展到下一個積分步長,積分方法必須重復來得到新的線性方程組,如果信號變化得特別快,積分步長應該取得非常小以便積分方法能收斂到正確的解,因此瞬態分析需要大量的數學操作。隨著SPICE的發布,其他一些機構也加入研究行列,更有一些軟件供應商也看中這個商機,紛紛推出基于SPICE3的各種商業軟件,如XSPICE、PSPICE、ISSPICE、T-SPICE、HSPICE等等,功能更強,更方便使用,使SPICE成為電子電路仿真的主流軟件,一些軟件公司也是通過SPICE相關軟件得到發展,并逐漸成為現在的EDA軟件公司,成為知識創造財富的實例。因為SPICE仿真需要相關的元器件仿真模型庫,還催生了依靠提供器件模型為生的公司和個人,但中國人都樂于奉獻,沒錢當然不會買,這種公司在中國是無法存在的(http://www.aeng.com/spicemodeling.asp )。SPICE軟件也有一定局限性,有些電路無法仿真或仿真時因不能收斂而失敗,特別是用于數模混合電路及脈沖電路時尤其如此。就算通過仿真,最終還是要通過實際制作電路板調試和驗證,仿真只是使這個過程大大縮短,次數大大減少,也就降低了成本。軟件能提高效率和降低成本,所以就有相應的價值,但中國人的人工費低廉而有的是時間,干得好干得快才讓人討厭,軟件在中國也就不值錢了。
上傳時間: 2022-05-25
上傳用戶:
PFC基礎知識-PF的定義1功率因數(Power Factor)的定義是指輸入有功功率(p)和視在功率(S)的比值;線性電路功率因數可用Cos表示,為正弦電流與正弦電壓的相位差;但是由于整流電路中二極管的非線性,導致輸入電流為嚴重的非正弦波形,用cosp已不能表示整流電路的功率因數;常規直接整流電路的濾波電容使輸出電壓平滑,但卻使輸入電流變為尖脈沖,并產生高次諧波分量。輸入電流波形變,導致功率因數下降,污染電網,甚至造成電子設備損壞。引入功率因數校正是必要的利用功率因數校正技術可A/全跟蹤交流輸入電壓波形,流輸入電流波形完使輸入電流波形皇純正弦波,并且與輸入電壓波形相位,,此時整流器的貨載可等效為純電阻。根據常用功率因數校正方法可分為有源功率因數校正(APFC)技術與無源功率因數校正(PPFC)技術。它置于橋式整流器與濾波用電解電容器之間,實際上是一種DC-DC變換器。無源功率因數校正是利用電感和電容組成濾波器,對輸入電容進行移相和整形。有源功率因數校正(APFC:Active Power Factor Correction),在負載即電力電子裝置本身的整流器和濾波電容之間增加一個功率變換電路,將整流器的輸入電流校正成為與電網電壓同相位的正弦波,消除了諧波和無功電流,因而將電網功率因數提高到近似為1.APFC電路常用拓撲:升壓式(Boost)降壓式(Buck)升/降壓式(Buck/Boost)反激式(Fly back)APFC電路形式:單極式 雙極式單相PFC 三相PFCBoost變換電路是有源功率因數校正器主回路拓撲的極好選擇。優點:輸入電流連續,因而產生低的傳導噪聲和最好的輸入電流波形;缺點:需要比輸入峰值電壓還要高的輸出電壓。
標簽: pfc
上傳時間: 2022-05-28
上傳用戶:
《非線性光學(第2版)(研究生)》基于極化理論,采用半經典理論體系,詳盡地講解了非線性光學的理論基礎,討論了一些重要的非線性光學學科分支,其內容包括光與物質相互作用的穩態過程、動態過程和瞬態過程。全書共分10章:前3章為基礎理論,在簡述非線性光學經典理論的基礎上,利用量子力學理論和光的電磁理論討論了物質對光的響應特性和輻射特性;第4、5章討論了各種穩態二階與三階非線性光學效應;第6章討論了瞬態相干光學;后4章分別較系統地討論了非線性光學領域中的4個分支內容:非線性光學相位共軛與光學雙穩態技術,光折變非線性光學,超短光脈沖非線性光學,光纖非線性光學。《非線性光學(第2版)(研究生)》可作為光學、光學工程、物理電子學、物理等專業“非線性光學”課程的研究生教材,亦可作為其他相關專業師生及科技人員的參考書。
標簽: 非線性光學
上傳時間: 2022-06-04
上傳用戶:1208020161
一,概述: IP5516一款集成升壓轉換器、鋰電池充電管理、電池電量指示的多功能電源管理SOC,為TWS藍牙耳機充電倉提供完整的電源解決方案。二,特性:1 同步開關放電: 300mA 同步升壓轉換 升壓效率高達93% 內置電源路徑管理,支持邊充邊放2 充電: 500mA 線性充電,充電電流可調 自動調節充電電流,匹配適配器輸出能力 支持4.20V、4.30V、4.35V 和4.4V 電池3 電量顯示: 內置10bit ADC 和精準庫倫計算法 支持4/3/2/1 顆LED 電量顯示4 低功耗: 智能識別耳機插入/充滿/拔出,自動進待機 支持雙路耳機獨立檢測 支持兩種待機模式,待機功耗分別可達3uA 和25 μA5 BOM 極簡: 功率MOS 內置,2.2uH 單電感實現放電6多重保護、高可靠性: 輸出過流、過壓、短路保護 輸入過壓、過充、過流保護 整機過溫保護 ESD 4KV,VIN 瞬態耐壓高達15V7深度定制: 可靈活低成本定制方案8封裝:QFN16(4*4*0.75)三,應用TWS藍牙耳機充電倉/充電倉
上傳時間: 2022-06-15
上傳用戶:
本設計電路介紹的是MC34063的升壓/降壓/正負電壓輸出電路,并提供PCB+SHEET+BOM三合一。電路分為三個升壓,降壓,升負電壓輸出,三個獨立單元。也可以共地,廣泛應用在多電壓供電場合。MC34063低成本,高性價比。該MC34063可用于升壓變換器、降壓變換器、反向器的控制核心,由它構成的DC/DC變換器僅用少量的外部元器件。
上傳時間: 2022-06-16
上傳用戶:
提供一系列fpga實戰教程給用戶并且包含代碼,適合新手以及有一定經驗的老手。為什么要學項目實戰篇:前面的篇章多為理論知識,而這一篇是結合開發板實物,從理論上升到實踐,將前面的基礎知識運用到實際的工程項目當中。項目實戰篇包含哪些內容:我們例舉三人表決器、數字時鐘、多終端點歌系統、數字示波器這四個實際的工程項目,手把手帶領大家從分析工程、分解工程、到最終實現工程。通過逐個解決工程中的實際問題,來學習原汁原味的 FPGA 設計。本篇一改傳統教程里逐個講解外設的方法,巧妙的將所有外設功能放在實際項目當中講解,使讀者真正意義上做到了現學現用,活學活用
標簽: verilog HELLO FPGA
上傳時間: 2022-06-17
上傳用戶:jiabin
1-1前言一般人所能夠感受到聲音的頻率約介於5H2-20KHz,超音波(Ultrasonic wave)即爲頻率超過20KHz以上的音波或機械振動,因此超音波馬達就是利用超音波的彈性振動頻率所構成的制動力。超音波馬達的內部主要是以壓電陶瓷材料作爲激發源,其成份是由鉛(Pb)、結(Zr)及鈦(Ti)的氧化物皓鈦酸鉛(Lead zirconate titanate,PZT)製成的。將歷電材料上下方各黏接彈性體,如銅或不銹鋼,並施以交流電壓於壓電陶瓷材料作爲驅動源,以激振彈性體,稱此結構爲定子(Stator),將其用彈簧與轉子Rotor)接觸,將所産生摩擦力來驅使轉子轉動,由於壓電材料的驅動能量很大,並足以抗衡轉子與定子間的正向力,雖然伸縮振幅大小僅有數徵米(um)的程度,但因每秒之伸縮達數十萬次,所以相較於同型的電磁式馬達的驅動能量要大的許多。超音波馬達的優點爲:1,轉子慣性小、響應時間短、速度範圍大。2,低轉速可產生高轉矩及高轉換效率。3,不受磁場作用的影響。4,構造簡單,體積大小可控制。5,不須經過齒輸作減速機構,故較爲安靜。實際應用上,超音波馬達具有不同於傳統電磁式馬達的特性,因此在不適合應用傳統馬達的場合,例如:間歇性運動的裝置、空間或形狀受到限制的場所;另外包括一些高磁場的場合,如核磁共振裝置、斷層掃描儀器等。所以未來在自動化設備、視聽音響、照相機及光學儀器等皆可應用超音波馬達來取代。
標簽: 超聲波電機
上傳時間: 2022-06-17
上傳用戶:
超聲波電機利用壓電陶瓷的逆壓電效應,將電能轉變為機械振動,再通過摩擦作用將機械振動轉變為電機的旋轉(直線)運動,進而驅動負載。壓電陶瓷作為超聲波電機的振動發生器件,其性能的優劣直接影響到電機的輸出性能。本文采用傳統的固相反應法制備P-41和PMnS-PZN-PZT壓電陶瓷,研究壓電阿瓷在行被型超聲波電機中的應用及壓電性能對電機性能的影響.研究了P41和PMns-PZN-PZT壓電陶瓷材料的結構、性能、頻率溫度穩定性及極化方式對壓電陶瓷性能的影響。結果表明,這兩種材料都具有較好的介電溫度穩定性,P41具有明顯的鐵電體相變特點,PMns-PZN-PZT具有她豫-鐵電體相變特點。采用同時同向一次極化工藝改善了二次極化工藝所遺留的各極化區域ds不均勻、分區界面應力的存在導致的性能不穩定性,同時縮短了極化時間,提高了超聲波電機的輸出性能.P-41陶的極化采件為3kV/mm,120 ℃極化15 min,PMnS-PZN-PZT陶瓷的極化條件為3.5 kV/mm.140℃極化15 min.研究了P-41和PMnS-PZN-PZT壓電陶瓷的性能與超聲波電機性能的相關性,探討了電機的導納、負載、啟動與關斷和溫度特性。結果表明,電機具有較好的瞬態特性,啟動時間ams,關斷時間<l ms.采用P-41壓電陶瓷電機的啟動與關斷速度比PMnS-PZIN-PZT壓電陶登電機的快,與P41壓電陶瓷具有非弛豫相變特點有關,說明P41壓電陶瓷比較適用于需要反復開關的超聲電機.同時,P41電機的Qm較小而Aar比較大(TRUM-60 1型電機),具有較好的負載驅動能力。電機的表面溫度隨運轉時間的延長迅速升高,最終在某一溫度下穩定運轉,采用PMnS-PZN-PZT壓電陶瓷電機的表面溫度明顯低于采用P41壓電陶瓷的電機(TRLIM6011電機),與PMnS-PZN-PZT壓電陶瓷具有非常低的介電損耗有關,因此這種材料比較適用于需要長時間運轉的超聲波電機。預壓力對電機的性能影響很大,不同尺寸電機具有不同的驅動性能.
上傳時間: 2022-06-18
上傳用戶:
摘要:本文通過介紹汽車直流電氣系統的構成和直流濾波器的設計原則,針對汽車音響電源濾波器參數的確定進行介紹,尤其是對各種考慮因素(Over Voltage和IS07637-2中的各種脈沖模型)進行Saber和MathCAD仿真分析作為設計的參考。關鍵詞:汽車音響、直流電源濾波器、瞬態傳導干擾脈沖、阻抗失配、汽車電氣系統、IS07637,TVS1,汽車電氣系統簡述近年來,隨著汽車功能的不斷增加和系統可靠性要求的不斷提高,越來越多的電子控制單元(ECU)被引入到汽車設計中,汽車中的電氣系統變得越來越復雜,已經成為汽車系統總成的核心。通常,汽車的電氣系統分為供電系統和用電設備兩部分。供電系統是指給用電設備產生、分配和傳遞電能裝置的總稱,它包括發電機、蓄電池、電線束、開關及繼電器等,具有低壓和直流的特點。汽車用電設備是指汽車電氣系統中需要電源供給的設備,如:起動機、空調,音響,車燈,ABS等等,其所需的電能由兩個電源供給,即:發電機和蓄電池。其具有單線制供電特點,即:所有用電設備均并聯。蓄電池和發電機的電源正極和各用電設備只用一根導線相連,而電源的負極搭接到汽車底盤上,俗稱負極搭鐵,利用發動機體、汽車車架和車身等金屬機體作為一公共電流回路。下圖為一汽車的電氣系統概要框圖(見圖1)
上傳時間: 2022-06-19
上傳用戶: