Floyd-Warshall算法描述
1)適用范圍:
a)APSP(All Pairs Shortest Paths)
b)稠密圖效果最佳
c)邊權可正可負
2)算法描述:
a)初始化:dis[u,v]=w[u,v]
b)For k:=1 to n
For i:=1 to n
For j:=1 to n
If dis[i,j]>dis[i,k]+dis[k,j] Then
Dis[I,j]:=dis[I,k]+dis[k,j]
c)算法結束:dis即為所有點對的最短路徑矩陣
3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。
考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽:
Floyd-Warshall
Shortest
Pairs
Paths
上傳時間:
2013-12-01
上傳用戶:dyctj
動態規劃的方程大家都知道,就是
f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j]
但是很多人會懷疑這道題的后效性而放棄動規做法。
本來我還想做Dijkstra,后來變了沒二十行pascal就告訴我數組越界了……(dist:array[1..1000*1001
div 2]...)
無奈之余看了xj_kidb1的題解,剛開始還覺得有問題,后來豁然開朗……
反復動規。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。
xj_kidb1的一個技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯了)
標簽:
動態規劃
方程
家
上傳時間:
2014-07-16
上傳用戶:libinxny