檢測技術及儀表的地位與作用1.1. 1檢測儀表的地位與作用一、 檢測儀表 檢測――對研究對象進行測量和試驗,取得定量信息和定性信息的過程。檢測儀表――專門用于“測試”或“檢測”的儀表。二、 地位與作用:1、 科學研究的手段 諾貝爾物理和化學獎中有1/4是屬于測試方法和儀器創新。2、 促進生產的主流環節3、 國民經濟的“倍增器”4、 軍事上的戰斗力5、 現代生活的好幫手6、 信息產業的源頭1.1.2 檢測技術是儀器儀表的技術基礎一、非電量的電測法――把非電量轉換為電量來測量 優越性:1)便于擴展測量的幅值范圍(量程) 2)便于擴寬的測量的頻率范圍(頻帶) 3)便于實現遠距離的自動測量 4) 便于與計算機技術相結合, 實現測量的智能化和網絡化二、現代檢測技術的組成: 電量測量技術、傳感器技術非電量電測技術。三、儀器儀表的理論基礎和技術基礎――實質就是“檢測技術”。 “檢測技術”+ “應用要求”=儀器儀表 1.2 傳感器概述1.2. 1傳感器的基本概念一、 傳感器的定義國家標準定義――“能感受(或響應)規定的被測量并按照一定規律轉換成可用信號輸出的器件或裝置。”(當今電信號最易于處理和便于傳輸) 通常定義――“能把外界非電信息轉換成電信號輸出的器件或裝置”或“能把非電量轉換成電量的器件或裝置”。二、 敏感器的定義――把被測非電量轉換為可用非電量的器件或裝置1、當 即被測非電量X正是傳感器所能接受和轉換的非電量(即可用非電量)Z時,可直接用傳感器將被測非電量X轉換成電量Y。 2、當 即被測非電量X不是傳感器所能接受和轉換的非電量(即可用非電量)Z時,就需要在傳感器前面增加一個敏感器,把被測非電量X轉換為該傳感器能夠接受和轉換的非電量(即可用非電量)Z。
上傳時間: 2013-10-08
上傳用戶:2728460838
基于改善快恢復二極管的的動態特性,通過對二極管的橫、縱向參數來進行分析,理論上提出了快恢復二極管的設計方法,并且結合SILVACO-TCAD仿真軟件進行驗證;得出了現代快恢復二極管應降低陽極濃度、減小基區少子壽命,采用加緩沖層的結論;這種結構極大的改善了快恢復二極管的正向導通特性,達到了優化動態特性的目的。
上傳時間: 2013-11-12
上傳用戶:xc216
色環電阻大小的識別和誤差的判斷方法
上傳時間: 2013-12-20
上傳用戶:evil
熱熔膠槍使用方法
標簽: 熱熔膠槍
上傳時間: 2013-10-31
上傳用戶:yjj631
電容器的參數標注方法有哪些
上傳時間: 2013-10-11
上傳用戶:dyctj
電子元器件的檢測方法及識別
上傳時間: 2014-01-03
上傳用戶:haiya2000
JTAG接口連接方法
上傳時間: 2013-11-19
上傳用戶:hebanlian
Micro_SD_卡(TF卡)_spi_模式實現方法
上傳時間: 2014-03-19
上傳用戶:bvdragon
超聲波傳感器適用于對大幅的平面進行靜止測距。普通的超聲波傳感器測距范圍大概是 2cm~450cm,分辨率3mm(淘寶賣家說的,筆者測試環境沒那么好,個人實測比較穩定的 距離10cm~2m 左右,超過此距離就經常有偶然不準確的情況發生了,當然不排除筆者技術 問題。) 測試對象是淘寶上面最便宜的SRF-04 超聲波傳感器,有四個腳:5v 電源腳(Vcc),觸發控制端(Trig),接收端(Echo),地端(GND) 附:SRF 系列超聲波傳感器參數比較 模塊工作原理: 采用IO 觸發測距,給至少10us 的高電平信號; 模塊自動發送8個40KHz 的方波,自動檢測是否有信號返回; 有信號返回,通過IO 輸出一高電平,高電平持續的時間就是超聲波從發射到返回的時間.測試距離=(高電平時間*聲速(340m/s))/2; 電路連接方法 Arduino 程序例子: constintTrigPin = 2; constintEchoPin = 3; floatcm; voidsetup() { Serial.begin(9600); pinMode(TrigPin, OUTPUT); pinMode(EchoPin, INPUT); } voidloop() { digitalWrite(TrigPin, LOW); //低高低電平發一個短時間脈沖去TrigPin delayMicroseconds(2); digitalWrite(TrigPin, HIGH); delayMicroseconds(10); digitalWrite(TrigPin, LOW); cm = pulseIn(EchoPin, HIGH) / 58.0; //將回波時間換算成cm cm = (int(cm * 100.0)) / 100.0; //保留兩位小數 Serial.print(cm); Serial.print("cm"); Serial.println(); delay(1000); }
上傳時間: 2013-11-01
上傳用戶:xiaoyuer
注:1.這篇文章斷斷續續寫了很久,畫圖技術也不精,難免錯漏,大家湊合看.有問題可以留言. 2.論壇排版把我的代碼縮進全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調制波,通過調整輸出信號占空比,從而達到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調制波。分辨率8 位即2 的8 次方等于 256 級精度。但是有時候我們會覺得6 個PWM 引腳不夠用。比如我們做一個10 路燈調光, 就需要有10 個PWM 腳。Arduino Duemilanove 2009 有13 個數字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調壓原理:PWM 有好幾種方法。而Arduino 因為電源和實現難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調整一個周期里面輸出腳高/低電平的時間比(即是占空比)去獲得給一個用電器不同 的平均功率。 如圖所示,假設PWM 波形周期1ms(即1kHz),分辨率1000 級。那么需要一個信號時間 精度1ms/1000=1us 的信號源,即1MHz。所以說,PWM 的實現難點在于需要使用很高頻的 信號源,才能獲得快速與高精度。下面先由一個簡單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測試此代碼。 程序解析:由for 循環可以看出,完成一個PWM 周期,共循環255 次。 假設bright=100 時候,在第0~100 次循環中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環是高電平,155 次循環是低電平。 如果忽略指令執行時間的話,這次的PWM 波形占空比為100/255,如果調整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設置了每次for 循環之后,將bright 加一,并且當bright 加到255 時歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應該是大家想的比較多的想法。 然后介紹一個簡單一點的。思維風格完全不同。不過對于驅動一個LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個For 循環。它先輸出一個高電平,然后維持(bright*30)us。然 后輸出一個低電平,維持時間((255-bright)*30)us。這樣兩次高低就能完成一個PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運行起來不占CPU 時間,所以軟件模擬一個引腳的PWM 完全沒有實用意義。我們軟件模擬的價值在于:他能將任意的數字IO 口變成PWM 引腳。 當一片Arduino 要同時控制多個PWM,并且沒有其他重任務的時候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個引腳的初始亮度,可以隨意設置 int StartPWMPin = 0, EndPWMPin = 13; //設置D0~D13為PWM 引腳 int PWMResolution = 255; //設置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環是為14盞燈做漸亮的。每次Arduino loop()循環, //brights 自增一次。直到brights=255時候,將brights 置零重新計數。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計數一個PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個PWM 周期均遍歷所有引腳 { if(i < brights[j])\ 所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調整LED 亮度的話,我們用64 級精度就行。這樣速度就是2x32x64=4ms。就不會閃了。
上傳時間: 2013-10-23
上傳用戶:mqien