The PCF8578 is a low power CMOS1 LCD row and column driver, designed to drive dotmatrix graphic displays at multiplex rates of 1:8, 1:16, 1:24 or 1:32. The device has40 outputs, of which 24 are programmable and configurable for the following ratios ofrows/columns: 32¤8, 24¤16, 16¤24 or 8¤32. The PCF8578 can function as a stand-alone LCDcontroller and driver for use in small systems. For larger systems it can be used inconjunction with up to 32 PCF8579s for which it has been optimized. Together these twodevices form a general purpose LCD dot matrix driver chip set, capable of driving displaysof up to 40960 dots. The PCF8578 is compatible with most microcontrollers andcommunicates via a two-line bidirectional bus (I2C-bus). Communication overhead isminimized by a display RAM with auto-incremented addressing and display bankswitching.
上傳時間: 2013-10-23
上傳用戶:頂得柱
為解決傳統可視倒車雷達視頻字符疊加器結構復雜,可靠性差,成本高昂等問題,在可視倒車雷達設計中采用視頻字符發生器芯片MAX7456。該芯片集成了所有用于產生用戶定義OSD,并將其插入視頻信號中所需的全部功能,僅需少量的外圍阻容元件即可正常工作。給出了以MAX7456為核心的可視倒車雷達的軟、硬件實現方案及設計實例。該方案具有電路結構簡單、價格低廉、符合人體視覺習慣的特點。經實際裝車測試,按該方案設計的可視倒車雷達視場清晰、提示字符醒目、工作可靠,可有效降低駕駛員倒車時的工作強度、減少倒車事故的發生。 Abstract: A new video and text generation chip,MAX7456,was used in the design of video parking sensor in order to simplify system structure,improve reliability and reduce cost. This chip included all the necessary functions to generate user-defined OSDs and to add them into the video signals. It could be put into work with addition of just a small number of resistances and capacitors. This paper provided software and hardware implementation solutions and design example based on the chip. The system had the characteristics of simplicity in circuit structure,lower cost,and comfort for the nature of human vision. Loading road test demonstrates high video and text display quality and reliable performance,which makes the driver easy to see backward and reduces chance of accidents.
上傳時間: 2013-12-10
上傳用戶:qiaoyue
NXP Semiconductor designed the LPC2400 microcontrollers around a 16-bit/32-bitARM7TDMI-S CPU core with real-time debug interfaces that include both JTAG andembedded Trace. The LPC2400 microcontrollers have 512 kB of on-chip high-speedFlash memory. This Flash memory includes a special 128-bit wide memory interface andaccelerator architecture that enables the CPU to execute sequential instructions fromFlash memory at the maximum 72 MHz system clock rate. This feature is available onlyon the LPC2000 ARM Microcontroller family of products. The LPC2400 can execute both32-bit ARM and 16-bit Thumb instructions. Support for the two Instruction Sets meansEngineers can choose to optimize their application for either performance or code size atthe sub-routine level. When the core executes instructions in Thumb state it can reducecode size by more than 30 % with only a small loss in performance while executinginstructions in ARM state maximizes core performance.
上傳時間: 2013-11-15
上傳用戶:zouxinwang
如何建立一個屬于自己的AVR的RTOS 自從03 年以來,對單片機的RTOS 的學習和應用的熱潮可謂一浪高過一浪.03 年,在離開校園前的,非典的那幾個月,在華師的后門那里買了本邵貝貝的《UCOSII》,通讀了幾次,沒有實驗器材,也不了了之。在21IC 上,大家都可以看到楊屹寫的關于UCOSII 在51 上的移植,于是掀起了51 上的RTOS 的熱潮。再后來,陳明計先生推出的small rots,展示了一個用在51 上的微內核,足以在52 上進行任務調度。前段時間,在ouravr 上面開有專門關于AVR 的Rtos 的專欄,并且不少的兄弟把自己的作品拿出來,著實開了不少眼界。這時,我重新回顧了使用單片機的經歷,覺得很有必要,從根本上對單片機的RTOS 的知識進行整理,于是,我開始了編寫一個用在AVR 單片機的RTOS。
上傳時間: 2013-11-07
上傳用戶:攏共湖塘
介紹了Small RTOS 51 多任務操作系統的基本原理,結合單片機控制的電子存包柜,簡要介紹了移植small RTOS51 及通過消息隊列實現任務通訊的軟件設計方法。
上傳時間: 2013-11-15
上傳用戶:asaqq
The MAX3243E device consists of three line drivers, five line receivers, and a dual charge-pump circuit with±15-kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and ±8-kV ESD (IEC61000-4-2, Contact Discharge)protection on serial-port connection pins. The device meets the requirements of TIA/EIA-232-F and provides theelectrical interface between an asynchronous communication controller and the serial-port connector. Thiscombination of drivers and receivers matches that needed for the typical serial port used in an IBM PC/AT, orcompatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-Vsupply. In addition, the device includes an always-active noninverting output (ROUT2B), which allowsapplications using the ring indicator to transmit data while the device is powered down. The device operates atdata signaling rates up to 250 kbit/s and a maximum of 30-V/ms driver output slew rate.
標簽: MULTICHANNEL 5.5 TO RS
上傳時間: 2013-10-19
上傳用戶:ddddddd
The μPSD32xx family, from ST, consists of Flash programmable system devices with a 8032 MicrocontrollerCore. Of these, the μPSD3234A and μPSD3254A are notable for having a complete implementationof the USB hardware directly on the chip, complying with the Universal Serial Bus Specification, Revision1.1.This application note describes a demonstration program that has been written for the DK3200 hardwaredemonstration kit (incorporating a μPSD3234A device). It gives the user an idea of how simple it is to workwith the device, using the HID class as a ready-made device driver for the USB connection.IN-APPLICATION-PROGRAMMING (IAP) AND IN-SYSTEM-PROGRAMMING (ISP)Since the μPSD contains two independent Flash memory arrays, the Micro Controller Unit (MCU) can executecode from one memory while erasing and programming the other. Product firmware updates in thefield can be reliably performed over any communication channel (such as CAN, Ethernet, UART, J1850)using this unique architecture. For In-Application-Programming (IAP), all code is updated through theMCU. The main advantage for the user is that the firmware can be updated remotely. The target applicationruns and takes care on its own program code and data memory.IAP is not the only method to program the firmware in μPSD devices. They can also be programmed usingIn-System-Programming (ISP). A IEEE1149.1-compliant JTAG interface is included on the μPSD. Withthis, the entire device can be rapidly programmed while soldered to the circuit board (Main Flash memory,Secondary Boot Flash memory, the PLD, and all configuration areas). This requires no MCU participation.The MCU is completely bypassed. So, the μPSD can be programmed or reprogrammed any time, anywhere, even when completely uncommitted.Both methods take place with the device in its normal hardware environment, soldered to a printed circuitboard. The IAP method cannot be used without previous use of ISP, because IAP utilizes a small amountof resident code to receive the service commands, and to perform the desired operations.
標簽: Demonstration 3200 USB for
上傳時間: 2014-02-27
上傳用戶:zhangzhenyu
This application note shows how to write an Inter Integrated Circuit bus driver (I²C) for the Philips P90CL301micro-controller.It is not only an example of writing a driver, but it also includes a set of application interface software routines toquickly implement a complete I²C multi-master system application.For specific applications the user will have to make minimal changes in the driver program. Using the drivermeans linking modules to your application software and including a header-file into the application sourceprograms. A small example program of how to use the driver is listed.The driver supports i.a. polled or interrupt driven message handling, slave message transfers and multi-mastersystem applications. Furthermore, it is made suitable for use in conjunction with real time operating systems, likepSOS+.
上傳時間: 2013-11-23
上傳用戶:weixiao99
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provide the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.
上傳時間: 2013-10-23
上傳用戶:copu
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.
上傳時間: 2014-04-02
上傳用戶:han_zh