本書第一部分講述的是傳統(tǒng)的網(wǎng)絡(luò)接口N e t B I O S、重定向器以及通過重定向器進(jìn)行的各類 網(wǎng)絡(luò)通信。盡管本書大部分內(nèi)容均圍繞Wi n s o c k編程這一主題展開,但是, A P I比起Wi n s o c k 來,仍然具有某些獨(dú)到之處
標(biāo)簽: 分 定向 網(wǎng)絡(luò)接口 編程
上傳時(shí)間: 2015-07-08
上傳用戶:戀天使569
Let the following relational tables be given: R = (A, B, C) and S = (D, E, F) where A, B, C, D, E, and F are the attributes (columns). Write the SQL statements that will express each of the queries given below:
標(biāo)簽: relational following tables given
上傳時(shí)間: 2014-01-14
上傳用戶:cx111111
Solve Ax=B with Crout s method
標(biāo)簽: method Solve Crout with
上傳時(shí)間: 2017-09-11
上傳用戶:許小華
b to b 模式 電子商務(wù)系統(tǒng) ,c# 開發(fā) , B/S結(jié)構(gòu)
標(biāo)簽: to 模式 電子商務(wù)系統(tǒng)
上傳時(shí)間: 2014-01-20
上傳用戶:hanli8870
~{JGR 8vQ IzWwR5SC5D2V?bD#DbO5M3~} ~{3v?b~} ~{Hk?b~} ~{2iQ/5H9&D\~} ~{?IRTWw@)3d~} ~{TZ~}JDK1.4.2~{OBM(9}~}
上傳時(shí)間: 2015-02-22
上傳用戶:ommshaggar
k-mean算法的源碼,對(duì)聚類非常有用!!可以直接使用!
上傳時(shí)間: 2016-04-21
上傳用戶:ZJX5201314
樣板 B 樹 ( B - tree ) 規(guī)則 : (1) 每個(gè)節(jié)點(diǎn)內(nèi)元素個(gè)數(shù)在 [MIN,2*MIN] 之間, 但根節(jié)點(diǎn)元素個(gè)數(shù)為 [1,2*MIN] (2) 節(jié)點(diǎn)內(nèi)元素由小排到大, 元素不重複 (3) 每個(gè)節(jié)點(diǎn)內(nèi)的指標(biāo)個(gè)數(shù)為元素個(gè)數(shù)加一 (4) 第 i 個(gè)指標(biāo)所指向的子節(jié)點(diǎn)內(nèi)的所有元素值皆小於父節(jié)點(diǎn)的第 i 個(gè)元素 (5) B 樹內(nèi)的所有末端節(jié)點(diǎn)深度一樣
上傳時(shí)間: 2017-05-14
上傳用戶:日光微瀾
歐幾里德算法:輾轉(zhuǎn)求余 原理: gcd(a,b)=gcd(b,a mod b) 當(dāng)b為0時(shí),兩數(shù)的最大公約數(shù)即為a getchar()會(huì)接受前一個(gè)scanf的回車符
標(biāo)簽: gcd getchar scanf mod
上傳時(shí)間: 2014-01-10
上傳用戶:2467478207
數(shù)據(jù)結(jié)構(gòu)課程設(shè)計(jì) 數(shù)據(jù)結(jié)構(gòu)B+樹 B+ tree Library
標(biāo)簽: Library tree 數(shù)據(jù)結(jié)構(gòu) 樹
上傳時(shí)間: 2013-12-31
上傳用戶:semi1981
How the K-mean Cluster work Step 1. Begin with a decision the value of k = number of clusters Step 2. Put any initial partition that classifies the data into k clusters. You may assign the training samples randomly, or systematically as the following: Take the first k training sample as single-element clusters Assign each of the remaining (N-k) training sample to the cluster with the nearest centroid. After each assignment, recomputed the centroid of the gaining cluster. Step 3 . Take each sample in sequence and compute its distance from the centroid of each of the clusters. If a sample is not currently in the cluster with the closest centroid, switch this sample to that cluster and update the centroid of the cluster gaining the new sample and the cluster losing the sample. Step 4 . Repeat step 3 until convergence is achieved, that is until a pass through the training sample causes no new assignments.
標(biāo)簽: the decision clusters Cluster
上傳時(shí)間: 2013-12-21
上傳用戶:gxmm
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1