Abstract: Class D amplifiers are typically very efficient, making them ideal candidates for PORTABLE applications that require longbattery life and low thermal dissipation. However, electromagnetic interference (EMI) is an issue that commonly accompanies theClass D switching topology. Active-emissions limiting reduces radiated emissions and enables "filterless" operation, allowingdesigners to create small, efficient PORTABLE applications with low EMI.
PORTABLE, battery-powered operation of electronic apparatushas become increasingly desirable. Medical, remotedata acquisition, power monitoring and other applicationsare good candidates for battery operation. In some circumstances,due to space, power or reliability considerations,it is preferable to operate the circuitry from a single 1.5Vcell. Unfortunately, a 1.5V supply eliminates almost alllinear ICs as design candidates. In fact, the LM10 opamp-reference and the LT®1017/LT1018 comparators arethe only IC gain blocks fully specifi ed for 1.5V operation.Further complications are presented by the 600mV dropof silicon transistors and diodes. This limitation consumesa substantial portion of available supply range, makingcircuit design diffi cult. Additionally, any circuit designedfor 1.5V operation must function at end-of-life batteryvoltage, typically 1.3V. (See Box Section, “Componentsfor 1.5V Operation.”)
Handheld designers often grapple with ways to de-bounceand control the on/off pushbutton of PORTABLE devices.Traditional de-bounce designs use discrete logic, fl ipflops, resistors and capacitors. Other designs includean onboard microprocessor and discrete comparatorswhich continuously consume battery power. For highvoltage multicell battery applications, a high voltageLDO is needed to drive the low voltage devices. All thisextra circuitry not only increases required board spaceand design complexity, but also drains the battery whenthe handheld device is turned off. Linear Technology addressesthis pushbutton interface challenge with a pairof tiny pushbutton controllers.
Alkaline batteries are convenient because they’re easy tofi nd and relatively inexpensive, making them the powersource of choice for PORTABLE instruments and devicesused for outdoor recreation. Their long shelf life alsomakes them an excellent choice for emergency equipmentthat may see infrequent use but must be ready to go on amoment’s notice. It is important that the DC/DC convertersin PORTABLE devices operate over the widest possiblebattery voltage range to extend battery run time, and thussave the user from frequent battery replacement.
Automotive power systems are unforgiving electronicenvironments. Transients to 90V can occur when thenominal voltage range is 10V to 15V (ISO7637), along withbattery reversal in some cases. It’s fairly straightforwardto build automotive electronics around this system, butincreasingly end users want to operate PORTABLE electronics,such as GPS systems or music/video players,and to charge their Li-Ion batteries from the automotivebattery. To do so requires a compact, robust, effi cientand easy-to-design charging system
A recent trend in the design of PORTABLE devices has beento use ceramic capacitors to filter DC/DC converter inputs.Ceramic capacitors are often chosen because of theirsmall size, low equivalent series resistance (ESR) and highRMS current capability. Also, recently, designers havebeen looking to ceramic capacitors due to shortages oftantalum capacitors.
Most PORTABLE computers have built-in sockets to acceptsmall PC cards for use as extended memories, fax modems,network interfaces, wireless communicators and awide assortment of other functions. The Personal ComputerMemory Card International Association (PCMCIA)has released specifications that outline the general powerrequirements for these cards.
PORTABLE, battery-powered operation of electronic apparatushas become increasingly desirable. Medical, remotedata acquisition, power monitoring and other applicationsare good candidates for batteryoperation. In some circumstances,due to space, power or reliability considerations,it is preferable to operate the circuitry from a single 1.5Vcell. Unfortunately, a 1.5V supply eliminates almost alllinear ICs as design candidates. In fact, the LM10 opamp-reference and the LT®1017/LT1018 comparators arethe only IC gain blocks fully specifi ed for 1.5V operation.Further complications are presented by the 600mV dropof silicon transistors and diodes. This limitation consumesa substantial portion of available supply range, makingcircuit design diffi cult. Additionally, any circuit designedfor 1.5V operation mustfunction at end-of-life batteryvoltage, typically 1.3V. (See Box Section, “Componentsfor 1.5V Operation.”)
便攜式信號采集在機器健康診斷系統中有較高的應用價值。機器健康診斷的信號特點是包括低頻信號。本文研究是為了實現簡易而且低成本的低頻便攜式信號采集。以Microchip公司單片機PIC18F1320為核心設計信號采集電路,實現了信號的采集和保存。系統采用串行電可擦除芯片24LC32A保存數據,經過有線通信,信號數據由串行口通過MAX232芯片輸送到微型計算機接收和保存,最后繪制出信號波形。 微型計算機程序采用Visual Basic編程。研究成功采樣頻率為3 kHz的復雜信號,證明該方案符合設計要求。
Abstract:
PORTABLE signal acquisition is useful in machine health monitoring systems. The signal characteristics of machine health monitoring includes low frequency signals. The goal of this study is to realize simple, inexpensive and PORTABLE low frequency signal sampling. This paper provides the project of signal acquisition system design based on PIC18F1320 microcontroller manufactured by the Microchip Technology Incorporation to achieve signal sampling and storage. The system adopted EEPROM 24LC32A to store the signal data. The microcomputer received data via wired link with the MAX232 IC through the serial port. The microcomputer program, programmed in Visual Basic, received the data, stored it and plotted the signal. The study successfully samples 3kHz complicated signals and thus meets the design requirement.