protel 99se 使用技巧以及常見問題解決方法:里面有一些protel 99se 特別技巧,還有我們經常遇到的一些問題!如何使一條走線至兩個不同位置零件的距離相同? 您可先在Design/Rule/High Speed/Matched Net Lengths的規則中來新增規則設定,最后再用Tools/EqualizeNet Lengths 來等長化即可。 Q02、在SCHLIB中造一零件其PIN的屬性,如何決定是Passive, Input, I/O, Hi- Z,Power,…..?在HELP中能找到說明嗎?市面有關 SIM?PLD?的書嗎?或貴公司有講義? 你可在零件庫自制零件時點選零件Pin腳,并在Electrical Type里,可以自行設定PIN的 屬性,您可參考臺科大的Protel sch 99se 里面有介紹關于SIM的內容。 Q03、請問各位業界前輩,如何能順利讀取pcad8.6版的線路圖,煩請告知 Protel 99SE只能讀取P-CAD 2000的ASCII檔案格式,所以你必須先將P-CAD8.6版的格式轉為P-CAD 2000的檔案格式,才能讓Protel讀取。 Q04、請問我該如何標示線徑大小的那個平方呢 你可以將格點大小設小,還有將字形大小縮小,再放置數字的平方位置即可。 Q05、請問我一次如何更改所有組件的字型 您可以點選其中一個組件字型,再用Global的方法就可以達成你的要求。
上傳時間: 2015-01-01
上傳用戶:yxgi5
good good study ,day day up
上傳時間: 2014-01-04
上傳用戶:waitingfy
Designing withProgrammable Logicin an Analog WorldProgrammable logic devices revolutionizeddigital design over 25 years ago,promising designers a blank chip todesign literally any function and programit in the field. PLDs can be low-logicdensity devices that use nonvolatilesea-of-gates cells called complexprogrammable logic devices (CPLDs)or they can be high-density devicesbased on SRAM look-up tables (LUTs)
標簽: Solutions Analog Altera FPGAs
上傳時間: 2013-10-27
上傳用戶:fredguo
Designing withProgrammable Logicin an Analog WorldProgrammable logic devicesrevolutionized digital design over 25years ago, promising designers a blankchip to design literally any functionand program it in the field. PLDs canbe low-logic density devices that usenonvolatile sea-of-gates cells calledcomplex programmable logic devices(CPLDs) or they can be high-densitydevices based on SRAM look-up tables
標簽: Solutions Analog Xilinx FPGAs
上傳時間: 2013-11-07
上傳用戶:suicone
In the past decade, the size and complexity of manyFPGA designs exceeds the time and resourcesavailable to most design teams, making the use andreuse of Intellectual Property (IP) imperative.However, integrating numerous IP blocks acquiredfrom both internal and external sources can be adaunting challenge that often extends, rather thanshortens, design time. As today's designs integrateincreasing amounts of functionality, it is vital thatdesigners have access to proven, up-to-date IP fromreliable sources.
上傳時間: 2013-11-11
上傳用戶:csgcd001
This application note describes the implementation of a two-dimensional Rank Order filter. Thereference design includes the RTL VHDL implementation of an efficient sorting algorithm. Thedesign is parameterizable for input/output precision, color standards, filter kernel size,maximum horizontal resolution, and implementation options. The rank to be selected can bemodified dynamically, and the actual horizontal resolution is picked up automatically from theinput synchronization signals. The design has a fully synchronous interface through the ce, clk,and rst ports.
上傳時間: 2013-12-14
上傳用戶:逗逗666
Consumer display applications commonly use high-speed LVDS interfaces to transfer videodata. Spread-spectrum clocking can be used to address electromagnetic compatibility (EMC)issues within these consumer devices. This application note uses Spartan®-6 FPGAs togenerate spread-spectrum clocks using the DCM_CLKGEN primitive.
上傳時間: 2013-11-01
上傳用戶:hjkhjk
The Virtex-4 features, such as the programmable IDELAY and built-in FIFO support, simplifythe bridging of a high-speed, PCI-X core to large amounts of DDR-SDRAM memory. Onechallenge is meeting the PCI-X target initial latency specification. PCI-X Protocol Addendum tothe PCI Local Bus Specification Revision 2.0a ([Ref 6]) dictates that when a target signals adata transfer, "the target must do so within 16 clocks of the assertion of FRAME#." PCItermination transactions, such as Split Response/Complete, are commonly used to meet thelatency specifications. This method adds complexity to the design, as well as additional systemlatency. Another solution is to increase the ratio of the memory frequency to the PCI-X busfrequency. However, this solution increases the required power and clock resource usage.
上傳時間: 2013-11-24
上傳用戶:18707733937
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
上傳時間: 2013-11-23
上傳用戶:shen_dafa
Finite state machines are widely used in digital circuit designs. Generally, when designing a state machine using an HDL, the synthesis tools will optimize away all states that cannot be reached and generate a highly optimized circuit. Sometimes, however, the optimization is not acceptable. For example, if the circuit powers up in an invalid state, or the circuit is in an extreme working environment and a glitch sends it into an undesired state, the circuit may never get back to its normal operating condition.
標簽: Creating Machines Mentor State
上傳時間: 2013-11-02
上傳用戶:xauthu