At present, there is a strong worldwide push Toward bringing fiber closer to indi-
vidual homes and businesses. Fiber-to-the-Home/Business (FTTH/B) or close to it
networks are poised to become the next major success story for optical fiber com-
munications. In fact, FTTH connections are currently experiencing double-digit or
even higher growth rates, e.g., in the United States the annual growth rate was 112%
between September 2006 and September 2007, and their presence can add value of
U.S. $4,000–15,000 to the selling price of a home.
Wireless metropolitan area networks (WirelessMANs) is emerging as a promising
broadband wireless access (BWA) technology to provide high-speed, high bandwidth
efficiency and high-capacity multimedia services for residential as well as enterprise
applications. It is observed that WirelessMAN (e.g., WiMAX) is even regarded as a 4G
technology. For the success of the WirelessMANs, international standardization organiza-
tions are very actively specifying the standards IEEE 802.16, ETSI HiperMAN and Korea
WiBro.
A wireless communication network can be viewed as a collection of nodes, located in some domain, which
can in turn be transmitters or receivers (depending on the network considered, nodes may be mobile users,
base stations in a cellular network, access points of a WiFi mesh etc.). At a given time, several nodes
transmit simultaneously, each Toward its own receiver. Each transmitter–receiver pair requires its own
wireless link. The signal received from the link transmitter may be jammed by the signals received from
the other transmitters. Even in the simplest model where the signal power radiated from a point decays in
an isotropic way with Euclidean distance, the geometry of the locations of the nodes plays a key role since
it determines the signal to interference and noise ratio (SINR) at each receiver and hence the possibility of
establishing simultaneously this collection of links at a given bit rate. The interference seen by a receiver is
the sum of the signal powers received from all transmitters, except its own transmitter.
The serious study of the practice of how to determine the appropriate content of a
specification is a seldom-appreciated pastime. Those who have the responsibility to
design a product would prefer a greater degree of freedom than permitted by the con-
tent of a specification. Many of those who would manage those who would design
a product would prefer to allocate all of the project funding and schedule to what
they consider more productive labor. These are the attitudes, of course, that doom a
project to defeat but they are hard to counter no matter how many times repeated by
design engineers and managers. A system engineer who has survived a few of these
experiences over a long career may retire and forget the past but we have an endur-
ing obligation to work Toward changing these attitudes while trying to offer younger
system engineers a pathway Toward a more sure success in requirements analysis and
specification publishing.
This book paves the path Toward fourth generation (4G) mobile communica-
tion by introducing mobility in heterogeneous IP networks with both third
generation (3G) and wireless local area networks (WLANs), which is seen as
one of the central issues in the becoming 4G of telecommunications networks
and systems. This book presents a thorough overview of 3G networks and
standards and discusses interworking and handover mechanisms between
WLANs and the Universal Mobile Telecommunication System (UMTS).
In the present era, low observability is one of the critical requirements in aerospace
sector, especially related to defense. The stealth technology essentially relates to
shaping and usage of radar absorbing materials (RAM) or radar absorbing struc-
tures (RAS). The performance of such radar cross section (RCS) reduction tech-
niques is limited by the bandwidth constraints, payload requirements, and other
structural issues. Moreover, with advancement of materials science, the structure
geometry no longer remains key decisive factor Toward stealth.
Welcome to the exciting, empowering world of home automation! If you have
ever wanted your home to do more than just protect you against the outside
elements and want to interface it to the digital domain, this book will show
you how. By demonstrating several easy-to-build projects, you will be able to
take the skills you learned from this book and expand upon and apply them
Toward custom home automation projects of your own design.
The large-scale deployment of the smart grid (SG) paradigm could play a strategic role in
supporting the evolution of conventional electrical grids Toward active, flexible and self-
healing web energy networks composed of distributed and cooperative energy resources.
From a conceptual point of view, the SG is the convergence of information and
operational technologies applied to the electric grid, providing sustainable options to
customers and improved security. Advances in research on SGs could increase the
efficiency of modern electrical power systems by: (i) supporting the massive penetration
of small-scale distributed and dispersed generators; (ii) facilitating the integration of
pervasive synchronized metering systems; (iii) improving the interaction and cooperation
between the network components; and (iv) allowing the wider deployment of self-healing
and proactive control/protection paradigms.
The large-scale deployment of the smart grid (SG) paradigm could play a strategic role in
supporting the evolution of conventional electrical grids Toward active, flexible and self-
healing web energy networks composed of distributed and cooperative energy resources.
From a conceptual point of view, the SG is the convergence of information and
operational technologies applied to the electric grid, providing sustainable options to
customers and improved security. Advances in research on SGs could increase the
efficiency of modern electrical power systems by: (i) supporting the massive penetration
of small-scale distributed and dispersed generators; (ii) facilitating the integration of
pervasive synchronized metering systems; (iii) improving the interaction and cooperation
between the network components; and (iv) allowing the wider deployment of self-healing
and proactive control/protection paradigms.