雙重移相控制的雙向全橋DC_DC變換器及其功率回流特性分析_趙彪
標簽: DC_DC 移相控制 全橋 變換器 功率 回流 特性分析
上傳時間: 2021-08-27
上傳用戶:19980615
電子變壓器手冊第二版 電子變壓器手冊第二版
標簽: 電子變壓器
上傳時間: 2021-12-14
上傳用戶:
基于SiC MOSFET的20kW全橋LLC變換器 分享一個基于SiC MOSFET的20kW全橋LLC變換器 Demo
上傳時間: 2021-12-21
上傳用戶:
基于STM32的全橋逆變器的設計共2頁這是一份非常不錯的資料,歡迎下載,希望對您有幫助!
上傳時間: 2022-03-18
上傳用戶:
數字控制雙向全橋DCDC變換器分析設計
標簽: DC/DC變換器
上傳時間: 2022-04-04
上傳用戶:qdxqdxqdxqdx
SPWM全橋逆變器主功率電路和控制電路設計
上傳時間: 2022-04-04
上傳用戶:jason_vip1
使用verilog實現全數字16QAM調制器,載波頻率1MHZ,數據比特流的速率為100Kbps
上傳時間: 2022-05-22
上傳用戶:
38V/100A可直接并聯大功率AC/DC變換器 隨著電力電子技術的發展,電源技術被廣泛應用于計算機、工業儀器儀表、軍事、航天等領域,涉及到國民經濟各行各業。特別是近年來,隨著IGBT的廣泛應用,開關電源向更大功率方向發展。研制各種各樣的大功率,高性能的開關電源成為趨勢。某電源系統要求輸入電壓為AC220V,輸出電壓為DC38V,輸出電流為100A,輸出電壓低紋波,功率因數>0.9,必要時多臺電源可以直接并聯使用,并聯時的負載不均衡度<5%。 設計采用了AC/DC/AC/DC變換方案。一次整流后的直流電壓,經過有源功率因數校正環節以提高系統的功率因數,再經半橋變換電路逆變后,由高頻變壓器隔離降壓,最后整流輸出直流電壓。系統的主要環節有DC/DC電路、功率因數校正電路、PWM控制電路、均流電路和保護電路等。 1 有源功率因數校正環節 由于系統的功率因數要求0.9以上,采用二極管整流是不能滿足要求的,所以,加入了有源功率因數校正環節。采用UC3854A/B控制芯片來組成功率因數電路。UC3854A/B是Unitrode公司一種新的高功率因數校正器集成控制電路芯片,是在UC3854基礎上的改進。其特點是:采用平均電流控制,功率因數接近1,高帶寬,限制電網電流失真≤3%[1]。圖1是由UC3854A/B控制的有源功率因數校正電路。 該電路由兩部分組成。UC3854A/B及外圍元器件構成控制部分,實現對網側輸入電流和輸出電壓的控制。功率部分由L2,C5,V等元器件構成Boost升壓電路。開關管V選擇西門康公司的SKM75GB123D模塊,其工作頻率選在35kHz。升壓電感L2為2mH/20A。C5采用四個450V/470μF的電解電容并聯。因為,設計的PFC電路主要是用在大功率DC/DC電路中,所以,在負載輕的時候不進行功率因數校正,當負載較大時功率因數校正電路自動投入使用。此部分控制由圖1中的比較器部分來實現。R10及R11是負載檢測電阻。當負載較輕時,R10及R11上檢測的信號輸入給比較器,使其輸出端為低電平,D2導通,給ENA(使能端)低電平使UC3854A/B封鎖。在負載較大時ENA為高電平才讓UC3854A/B工作。D3接到SS(軟啟動端),在負載輕時D3導通,使SS為低電平;當負載增大要求UC3854A/B工作時,SS端電位從零緩慢升高,控制輸出脈沖占空比慢慢增大實現軟啟動。 2 DC/DC主電路及控制部分分析 2.1 DC/DC主電路拓撲 在大功率高頻開關電源中,常用的主變換電路有推挽電路、半橋電路、全橋電路等[2]。其中推挽電路的開關器件少,輸出功率大,但開關管承受電壓高(為電源電壓的2倍),且變壓器有六個抽頭,結構復雜;全橋電路開關管承受的電壓不高,輸出功率大,但是需要的開關器件多(4個),驅動電路復雜。半橋電路開關管承受的電壓低,開關器件少,驅動簡單。根據對各種拓撲方案的工程化實現難度,電氣性能以及成本等指標的綜合比較,本電源選用半橋式DC/DC變換器作為主電路。圖2為大功率開關電源的主電路拓撲圖。
上傳時間: 2013-11-13
上傳用戶:ukuk
移相控制的全橋PWM變換器是最常用的中大功率DC/DC變換電路拓撲形式之一。移相PWM控制方式利用開關管的結電容和高頻變壓器的漏電感或原邊串聯電感作為諧振元件,使開關管能進行零電壓開通和關斷,從而有效地降低了電路的開關損耗和開關噪聲,減少了器件開關過程中產生的電磁干擾,為變換器提高開關頻率、提高效率、減小尺寸及減輕質量提供了良好的條件。然而,傳統的移相全橋變換器的輸出整流二極管存在反向恢復過程,會引起寄生振蕩,二極管上存在很高的尖峰電壓,需增加阻容吸收回路進行抑制,文獻提出了兩種帶箝位二極管的拓撲,可以很好地抑制寄生振蕩。本文采取文獻提出的拓撲結構,設計了一臺280 W移相全橋軟開關DC/DC變換器,該變換器輸入電壓為194~310 V,輸出電壓為76V。
上傳時間: 2014-08-30
上傳用戶:thing20
近年來,便攜式設備如掌上電腦、個人通信設備等電子消費產品得到了飛速發展,這些電子產品均采用鋰電池供電。鋰離子電池的電壓隨著充放電狀態的改變會發生很大變化,使得電池電壓可能高于、也可能低于系統所需電源電壓,需要升壓/降壓DCDC轉換器將變化的電池電壓轉換為穩定的直流電壓,實現升壓模式與降壓模式之間的平滑過渡和提高過渡模式的效率是升壓/降壓DC-DC轉換器研究的熱點和難點。本文首先介紹了H橋升壓降壓轉換器的工作原理與存在的問題。系統在升壓和降壓轉換過程中,會發生跳周期現象,產生較大輸出紋波,因此本文提出在該轉換模式下,增加H橋非反相工作模式作為過渡模式,以減小系統的輸出紋波。在過渡模式下為了得到高的轉換效率,因此本文改進H橋非反相工作模式,來提高系統的轉換效率。其次,本文推導出H橋升壓/降壓轉換器的三種工作模式包括升壓模式、過渡模式、降壓模式的小信號模型,用 sisotool工具搭建系統頻域模型,確定系統的補償方案,再用 simulink搭建整個H橋升壓降壓轉換器系統,在三種工作模式下驗證補償方案。最后,本論文采用035 um TSMCCMOS工藝設計H橋升壓/降壓DCDC轉換器,可輸入電壓范圍是2.7-52V,VFB為1.2V,開關頻率范圍為300KHz-2MHz,輸出最大電流為600mA。提取電路網表,在開關頻率為1MH條件下,Hspice仿真與分析,從仿真結果上看,當輸出電阻分別為R=5.59和R=339重載情況下下,系統在升壓模式的轉換效率為91%和94%、在升壓降壓模式的轉換效率為75%和83%、在降壓模式下轉換效為73%和79%,過渡模式下的紋波為30mV:當輸出電阻R=509輕載條件下,輸入電壓分別為2.7V、3.3V、4.2V,系統的轉換效率分別為79%、65%、73%以上結果表明本文所實現的DC電路達到高效、紋波小的要求
標簽: DC-DC轉換器
上傳時間: 2022-04-08
上傳用戶:kingwide