模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。
標簽: 模擬退火算法
上傳時間: 2015-04-24
上傳用戶:ryb
模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。
標簽: 模擬退火算法
上傳時間: 2014-12-19
上傳用戶:TRIFCT
CDMA的Matlab例程,為研究萊斯K因子影響提供一個平臺,僅供參考
上傳時間: 2013-12-26
上傳用戶:龍飛艇
數據結構算法:使用循環隊列,K階斐波那契數列的一種算法實現。
上傳時間: 2014-02-04
上傳用戶:Shaikh
DSP編程代碼,FFT算法,經典!! FFT實驗 一、 理論: 公式(1)FFT運算公式 FFT并不是一種新的變換,它是離散傅立葉變換(DFT)的一種快速算法。由于我們在計算DFT時一次復數乘法需用四次實數乘法和二次實數加法;一次復數加法則需二次實數加法。每運算一個X(k)需要4N次復數乘法及2N+2(N-1)=2(2N-1)次實數加法。所以整個DFT運算總共需要4N^2次實數乘法和N*2(2N-1)=2N(2N-1)次實數加法。如此一來,計算時乘法次數和加法次數都是和N^2成正比的,當N很大時,運算量是可觀的,因而需要改進對DFT的算法減少運算速度。 根據傅立葉變換的對稱性和周期性,我們可以將DFT運算中有些項合并。 我們先設序列長度為N=2^L,L為整數。將N=2^L的序列x(n)(n=0,1,……,N-1),按N的奇偶分成兩組,也就是說我們將一個N點的DFT分解成兩個N/2點的DFT,他們又從新組合成一個如下式所表達的N點DFT: 一般來說,輸入被假定為連續、合成的。當輸入為純粹的實數的時候,我們就可以利用左右對稱的特性更好的計算DFT。 我們稱這樣的RFFT優化算法是包裝算法:首先2N點實數的連續輸入稱為“進包”。其次N點的FFT被連續被運行。最后作為結果產生的N點的合成輸出是
上傳時間: 2015-04-29
上傳用戶:牛布牛
接法又稱周期圖法,它是把隨機序列x(n)的N個觀測數據視為一能量有限的序列,直接計算x(n)的離散傅立葉變換,得X(k),然后再取其幅值的平方,并除以N,作為序列x(n)真實功率譜的估計。
標簽: 周期
上傳時間: 2015-05-01
上傳用戶:zycidjl
本程序用C語言實現了集成神經網絡解決廣義異或問題。用神經網絡集成方法做成表決網,可克服初始權值的影響,對神經網絡分類器來說:假設有N個獨立的子網,采用絕對多數投票法,再假設每個子網以1-p的概率給出正確結果,且網絡之間的錯誤不相關,則表決系統發生錯誤的概率為 Perr = ( ) pk(1-p)N-k 當p<1/2時 Perr 隨N增大而單調遞減. 在工程化設計中,先設計并訓練數目較多的子網,然后從中選取少量最佳子網形成表決系統,可以達到任意高的泛化能力。
上傳時間: 2015-05-03
上傳用戶:kiklkook
matlab的源程序,沒有其他目的,只希望下載k均值算法看看!
上傳時間: 2013-12-25
上傳用戶:xlcky
提供一個人工免疫算法源程序,其算法過程包括: 1.設置各參數 2.隨機產生初始群體——pop=initpop(popsize,chromlength) 3.故障類型編碼,每一行為一種!code(1,:),正常;code(2,:),50%;code(3,:),150%。實際故障測得數據編碼,這里Unnoralcode,188% 4.開始迭代(M次): 1)計算目標函數值:歐氏距離[objvalue]=calobjvalue(pop,i) 2)計算群體中每個個體的適應度fitvalue=calfitvalue(objvalue) 3)選擇newpop=selection(pop,fitvalue) objvalue=calobjvalue(newpop,i) % 交叉newpop=crossover(newpop,pc,k) objvalue=calobjvalue(newpop,i) % 變異newpop=mutation(newpop,pm) objvalue=calobjvalue(newpop,i) % 5.求出群體中適應值最大的個體及其適應值 6.迭代停止判斷。
上傳時間: 2014-01-01
上傳用戶:trepb001
物流分析工具包。Facility location: Continuous minisum facility location, alternate location-allocation (ALA) procedure, discrete uncapacitated facility location Vehicle routing: VRP, VRP with time windows, traveling salesman problem (TSP) Networks: Shortest path, min cost network flow, minimum spanning tree problems Geocoding: U.S. city or ZIP code to longitude and latitude, longitude and latitude to nearest city, Mercator projection plotting Layout: Steepest descent pairwise interchange (SDPI) heuristic for QAP Material handling: Equipment selection General purpose: Linear programming using the revised simplex method, mixed-integer linear programming (MILP) branch and bound procedure Data: U.S. cities with populations of at least 10,000, U.S. highway network (Oak Ridge National Highway Network), U.S. 3- and 5-digit ZIP codes
標簽: location location-allocation Continuous alternate
上傳時間: 2015-05-17
上傳用戶:kikye