MSP430系列單片機(jī)是美國德州儀器(TI)1996年開始推向市場的一種16位超低功耗、具有精簡指令集(RISC)的混合信號處理器(Mixed Signal Processor)。
MSP430單片機(jī)稱之為混合信號處理器,是由于其針對實(shí)際應(yīng)用需求,將多個(gè)不同功能的模擬電路、數(shù)字電路模塊和微處理器集成在一個(gè)芯片上,以提供
Synopsys' widely-used design constraints format, known as SDC, describes the "design intent" and surrounding constraints for synthesis, clocking, timing, power, test and environmental and operating conditions. SDC has been in use and evolving for more than 20 years, making it the most popular and proven format for describing design constraints. Essentially all synthesized designs use SDC and numerous EDA companies have translators that can read and process SDC.
DESCRIPTION
The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low-power
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.
The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 μs.
The MSP430G2x13 and MSP430G2x53 series are ultra-low-power mixed signal microcontrollers with built-in 16-
bit timers, up to 24 I/O capacitive-touch enabled pins, a versatile analog comparator, and built-in communication
capability using the universal serial communication interface. In addition the MSP430G2x53 family members
have a 10-bit analog-to-digital (A/D) converter. For configuration details see Table 1.
Typical applications include low-cost sensor systems that capture analog signals, convert them to digital values,
and then process the data for display or for transmission to a host system.
This paper reviews key factors to practical ESD
protection design for RF and analog/mixed-signal (AMS) ICs,
including general challenges emerging, ESD-RFIC interactions,
RF ESD design optimization and prediction, RF ESD design
characterization, ESD-RFIC co-design technique, etc. Practical
design examples are discussed. It means to provide a systematic
and practical design flow for whole-chip ESD protection design
optimization and prediction for RF/AMS ICs to ensure 1 st Si
design success.
Human Factors and Systems Interaction aims to address the main issues of concern
within systems interface with a particular emphasis on the system lifecycle
development and implementation of interfaces and the general implications of
virtual, augmented and mixed reality with respect to human and technology
interaction. Human Factors and Systems Interaction is, in the first instance, affected
by the forces shaping the nature offuture computing and systems development
本文主要介紹如何在Wado設(shè)計(jì)套件中進(jìn)行時(shí)序約束,原文出自 xilinx中文社區(qū)。1 Timing Constraints in Vivado-UCF to xdcVivado軟件相比于sE的一大轉(zhuǎn)變就是約束文件,5E軟件支持的是UcF(User Constraints file,而 Vivado軟件轉(zhuǎn)換到了XDc(Xilinx Design Constraints)。XDC主要基于SDc(Synopsys Design Constraints)標(biāo)準(zhǔn),另外集成了Xinx的一些約束標(biāo)準(zhǔn)可以說這一轉(zhuǎn)變是xinx向業(yè)界標(biāo)準(zhǔn)的靠攏。Altera從 TimeQuest開始就一直使用SDc標(biāo)準(zhǔn),這一改變,相信對于很多工程師來說是好事,兩個(gè)平臺(tái)之間的轉(zhuǎn)換會(huì)更加容易些。首先看一下業(yè)界標(biāo)準(zhǔn)SDc的原文介紹:Synopsys widely-used design constraints format, known as sDc, describes the design intent"and surrounding constraints for synthesis, clocking, timing, power, test and environmental and operating conditions. sDc has been in use and evolving for more than 20 years, making it the most popular and proven format for describing design constraints. Essentially all synthesized designs use SDc and numerous EDa companies have translators that can read and process sDc
Spartane-6 LXand LXT FPGAs are available in various speed grades, with -3 having the highest performance. The DC and AC electrical parameters of the Automotive XA Spartan-6 FPGAs and Defense-grade Spartan-6Q FPGAs devices are equivalent to the commercial specifications except where noted. The timing characteristics of the commercial(XC)-2 speed grade industrial device are the same as for a-2 speed grade commercial device. The -2Q and -3Q speed grades are exclusively for the expanded(Q) temperature range. The timing characteristics are equivalent to those shown for the-2 and-3speed grades for the Automotive and Defense-grade devices.Spartan-6 FPGA DC and AC characteristics are specified for commercial (C), industrial (), and expanded (Q) temperature ranges. Only selected speed grades and/or devices might be available in the industrial or expanded temperature ranges for Automotive and Defense-grade devices.