文件中詳細(xì)列舉出FLIR雷達(dá)產(chǎn)品所使用的頻率波段以及發(fā)射功率資訊!
上傳時(shí)間: 2015-03-18
上傳用戶:戴斗笠的神秘人
模塊電源的電氣性能是通過一系列測(cè)試來呈現(xiàn)的,下列為一般的功能性測(cè)試項(xiàng)目,詳細(xì)說明如下: 電源調(diào)整率(Line Regulation) 負(fù)載調(diào)整率(Load Regulation) 綜合調(diào)整率(Conmine Regulation) 輸出漣波及雜訊(Ripple & Noise) 輸入功率及效率(Input Power, Efficiency) 動(dòng)態(tài)負(fù)載或暫態(tài)負(fù)載(Dynamic or Transient Response) 起動(dòng)(Set-Up)及保持(Hold-Up)時(shí)間 常規(guī)功能(Functions)測(cè)試 1. 電源調(diào)整率 電源調(diào)整率的定義為電源供應(yīng)器于輸入電壓變化時(shí)提供其穩(wěn)定輸出電壓的能力。測(cè)試步驟如下:于待測(cè)電源供應(yīng)器以正常輸入電壓及負(fù)載狀況下熱機(jī)穩(wěn)定后,分別于低輸入電壓(Min),正常輸入電壓(Normal),及高輸入電壓(Max)下測(cè)量并記錄其輸出電壓值。 電源調(diào)整率通常以一正常之固定負(fù)載(Nominal Load)下,由輸入電壓變化所造成其輸出電壓偏差率(deviation)的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 2. 負(fù)載調(diào)整率 負(fù)載調(diào)整率的定義為開關(guān)電源于輸出負(fù)載電流變化時(shí),提供其穩(wěn)定輸出電壓的能力。測(cè)試步驟如下:于待測(cè)電源供應(yīng)器以正常輸入電壓及負(fù)載狀況下熱機(jī)穩(wěn)定后,測(cè)量正常負(fù)載下之輸出電壓值,再分別于輕載(Min)、重載(Max)負(fù)載下,測(cè)量并記錄其輸出電壓值(分別為Vo(max)與Vo(min)),負(fù)載調(diào)整率通常以正常之固定輸入電壓下,由負(fù)載電流變化所造成其輸出電壓偏差率的百分比,如下列公式所示: [Vo(max)-Vo(min)] / Vo(normal) 3. 綜合調(diào)整率 綜合調(diào)整率的定義為電源供應(yīng)器于輸入電壓與輸出負(fù)載電流變化時(shí),提供其穩(wěn)定輸出電壓的能力。這是電源調(diào)整率與負(fù)載調(diào)整率的綜合,此項(xiàng)測(cè)試系為上述電源調(diào)整率與負(fù)載調(diào)整率的綜合,可提供對(duì)電源供應(yīng)器于改變輸入電壓與負(fù)載狀況下更正確的性能驗(yàn)證。 綜合調(diào)整率用下列方式表示:于輸入電壓與輸出負(fù)載電流變化下,其輸出電壓之偏差量須于規(guī)定之上下限電壓范圍內(nèi)(即輸出電壓之上下限絕對(duì)值以內(nèi))或某一百分比界限內(nèi)。 4. 輸出雜訊 輸出雜訊(PARD)系指于輸入電壓與輸出負(fù)載電流均不變的情況下,其平均直流輸出電壓上的周期性與隨機(jī)性偏差量的電壓值。輸出雜訊是表示在經(jīng)過穩(wěn)壓及濾波后的直流輸出電壓上所有不需要的交流和噪聲部份(包含低頻之50/60Hz電源倍頻信號(hào)、高于20 KHz之高頻切換信號(hào)及其諧波,再與其它之隨機(jī)性信號(hào)所組成)),通常以mVp-p峰對(duì)峰值電壓為單位來表示。 一般的開關(guān)電源的規(guī)格均以輸出直流輸出電壓的1%以內(nèi)為輸出雜訊之規(guī)格,其頻寬為20Hz到20MHz。電源實(shí)際工作時(shí)最惡劣的狀況(如輸出負(fù)載電流最大、輸入電源電壓最低等),若電源供應(yīng)器在惡劣環(huán)境狀況下,其輸出直流電壓加上雜訊后之輸出瞬時(shí)電壓,仍能夠維持穩(wěn)定的輸出電壓不超過輸出高低電壓界限情形,否則將可能會(huì)導(dǎo)致電源電壓超過或低于邏輯電路(如TTL電路)之承受電源電壓而誤動(dòng)作,進(jìn)一步造成死機(jī)現(xiàn)象。 同時(shí)測(cè)量電路必須有良好的隔離處理及阻抗匹配,為避免導(dǎo)線上產(chǎn)生不必要的干擾、振鈴和駐波,一般都采用雙同軸電纜并以50Ω于其端點(diǎn)上,并使用差動(dòng)式量測(cè)方法(可避免地回路之雜訊電流),來獲得正確的測(cè)量結(jié)果。 5. 輸入功率與效率 電源供應(yīng)器的輸入功率之定義為以下之公式: True Power = Pav(watt) = Vrms x Arms x Power Factor 即為對(duì)一周期內(nèi)其輸入電壓與電流乘積之積分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.為功率因素(Power Factor),通常無功率因素校正電路電源供應(yīng)器的功率因素在0.6~0.7左右,其功率因素為1~0之間。 電源供應(yīng)器的效率之定義為為輸出直流功率之總和與輸入功率之比值。效率提供對(duì)電源供應(yīng)器正確工作的驗(yàn)證,若效率超過規(guī)定范圍,即表示設(shè)計(jì)或零件材料上有問題,效率太低時(shí)會(huì)導(dǎo)致散熱增加而影響其使用壽命。 6. 動(dòng)態(tài)負(fù)載或暫態(tài)負(fù)載 一個(gè)定電壓輸出的電源,于設(shè)計(jì)中具備反饋控制回路,能夠?qū)⑵漭敵鲭妷哼B續(xù)不斷地維持穩(wěn)定的輸出電壓。由于實(shí)際上反饋控制回路有一定的頻寬,因此限制了電源供應(yīng)器對(duì)負(fù)載電流變化時(shí)的反應(yīng)。若控制回路輸入與輸出之相移于增益(Unity Gain)為1時(shí),超過180度,則電源供應(yīng)器之輸出便會(huì)呈現(xiàn)不穩(wěn)定、失控或振蕩之現(xiàn)象。實(shí)際上,電源供應(yīng)器工作時(shí)的負(fù)載電流也是動(dòng)態(tài)變化的,而不是始終維持不變(例如硬盤、軟驅(qū)、CPU或RAM動(dòng)作等),因此動(dòng)態(tài)負(fù)載測(cè)試對(duì)電源供應(yīng)器而言是極為重要的。可編程序電子負(fù)載可用來模擬電源供應(yīng)器實(shí)際工作時(shí)最惡劣的負(fù)載情況,如負(fù)載電流迅速上升、下降之斜率、周期等,若電源供應(yīng)器在惡劣負(fù)載狀況下,仍能夠維持穩(wěn)定的輸出電壓不產(chǎn)生過高激(Overshoot)或過低(Undershoot)情形,否則會(huì)導(dǎo)致電源之輸出電壓超過負(fù)載組件(如TTL電路其輸出瞬時(shí)電壓應(yīng)介于4.75V至5.25V之間,才不致引起TTL邏輯電路之誤動(dòng)作)之承受電源電壓而誤動(dòng)作,進(jìn)一步造成死機(jī)現(xiàn)象。 7. 啟動(dòng)時(shí)間與保持時(shí)間 啟動(dòng)時(shí)間為電源供應(yīng)器從輸入接上電源起到其輸出電壓上升到穩(wěn)壓范圍內(nèi)為止的時(shí)間,以一輸出為5V的電源供應(yīng)器為例,啟動(dòng)時(shí)間為從電源開機(jī)起到輸出電壓達(dá)到4.75V為止的時(shí)間。 保持時(shí)間為電源供應(yīng)器從輸入切斷電源起到其輸出電壓下降到穩(wěn)壓范圍外為止的時(shí)間,以一輸出為5V的電源供應(yīng)器為例,保持時(shí)間為從關(guān)機(jī)起到輸出電壓低于4.75V為止的時(shí)間,一般值為17ms或20ms以上,以避免電力公司供電中于少了半周或一周之狀況下而受影響。 8. 其它 在電源具備一些特定保護(hù)功能的前提下,還需要進(jìn)行保護(hù)功能測(cè)試,如過電壓保護(hù)(OVP)測(cè)試、短路保護(hù)測(cè)試、過功保護(hù)等
標(biāo)簽: 模塊電源 參數(shù) 指標(biāo) 測(cè)試方法
上傳時(shí)間: 2013-10-22
上傳用戶:zouxinwang
本書主要闡述設(shè)計(jì)射頻與微波功率放大器所需的理論、方法、設(shè)計(jì)技巧,以及將分析計(jì)算與計(jì)算機(jī)輔助設(shè)計(jì)相結(jié)合的優(yōu)化設(shè)計(jì)方法。這些方法提高了設(shè)計(jì)效率,縮短了設(shè)計(jì)周期。本書內(nèi)容覆蓋非線性電路設(shè)計(jì)方法、非線性主動(dòng)設(shè)備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設(shè)計(jì)、寬帶功率放大器及通信系統(tǒng)中的功率放大器設(shè)計(jì)。 本書適合從事射頻與微波動(dòng)功率放大器設(shè)計(jì)的工程師、研究人員及高校相關(guān)專業(yè)的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設(shè)計(jì)工程師,他曾經(jīng)任教于澳大利亞Linz大學(xué)、新加坡微電子學(xué)院、莫斯科通信和信息技術(shù)大學(xué)。他目前正在講授研究班課程,在該班上,本書作為國際微波年會(huì)論文集。 目錄 第1章 雙口網(wǎng)絡(luò)參數(shù) 1.1 傳統(tǒng)的網(wǎng)絡(luò)參數(shù) 1.2 散射參數(shù) 1.3 雙口網(wǎng)絡(luò)參數(shù)間轉(zhuǎn)換 1.4 雙口網(wǎng)絡(luò)的互相連接 1.5 實(shí)際的雙口電路 1.5.1 單元件網(wǎng)絡(luò) 1.5.2 π形和T形網(wǎng)絡(luò) 1.6 具有公共端口的三口網(wǎng)絡(luò) 1.7 傳輸線 參考文獻(xiàn) 第2章 非線性電路設(shè)計(jì)方法 2.1 頻域分析 2.1.1 三角恒等式法 2.1.2 分段線性近似法 2.1.3 貝塞爾函數(shù)法 2.2 時(shí)域分析 2.3 NewtOn.Raphscm算法 2.4 準(zhǔn)線性法 2.5 諧波平衡法 參考文獻(xiàn) 第3章 非線性有源器件模型 3.1 功率MOSFET管 3.1.1 小信號(hào)等效電路 3.1.2 等效電路元件的確定 3.1.3 非線性I—V模型 3.1.4 非線性C.V模型 3.1.5 電荷守恒 3.1.6 柵一源電阻 3.1.7 溫度依賴性 3.2 GaAs MESFET和HEMT管 3.2.1 小信號(hào)等效電路 3.2.2 等效電路元件的確定 3.2.3 CIJrtice平方非線性模型 3.2.4 Curtice.Ettenberg立方非線性模型 3.2.5 Materka—Kacprzak非線性模型 3.2.6 Raytheon(Statz等)非線性模型 3.2.7 rrriQuint非線性模型 3.2.8 Chalmers(Angek)v)非線性模型 3.2.9 IAF(Bemth)非線性模型 3.2.10 模型選擇 3.3 BJT和HBT汀管 3.3.1 小信號(hào)等效電路 3.3.2 等效電路中元件的確定 3.3.3 本征z形電路與T形電路拓?fù)渲g的等效互換 3.3.4 非線性雙極器件模型 參考文獻(xiàn) 第4章 阻抗匹配 4.1 主要原理 4.2 Smith圓圖 4.3 集中參數(shù)的匹配 4.3.1 雙極UHF功率放大器 4.3.2 M0SFET VHF高功率放大器 4.4 使用傳輸線匹配 4.4.1 窄帶功率放大器設(shè)計(jì) 4.4.2 寬帶高功率放大器設(shè)計(jì) 4.5 傳輸線類型 4.5.1 同軸線 4.5.2 帶狀線 4.5.3 微帶線 4.5.4 槽線 4.5.5 共面波導(dǎo) 參考文獻(xiàn) 第5章 功率合成器、阻抗變換器和定向耦合器 5.1 基本特性 5.2 三口網(wǎng)絡(luò) 5.3 四口網(wǎng)絡(luò) 5.4 同軸電纜變換器和合成器 5.5 wilkinson功率分配器 5.6 微波混合橋 5.7 耦合線定向耦合器 參考文獻(xiàn) 第6章 功率放大器設(shè)計(jì)基礎(chǔ) 6.1 主要特性 6.2 增益和穩(wěn)定性 6.3 穩(wěn)定電路技術(shù) 6.3.1 BJT潛在不穩(wěn)定的頻域 6.3.2 MOSFET潛在不穩(wěn)定的頻域 6.3.3 一些穩(wěn)定電路的例子 6.4 線性度 6.5 基本的工作類別:A、AB、B和C類 6.6 直流偏置 6.7 推挽放大器 6.8 RF和微波功率放大器的實(shí)際外形 參考文獻(xiàn) 第7章 高效率功率放大器設(shè)計(jì) 7.1 B類過激勵(lì) 7.2 F類電路設(shè)計(jì) 7.3 逆F類 7.4 具有并聯(lián)電容的E類 7.5 具有并聯(lián)電路的E類 7.6 具有傳輸線的E類 7.7 寬帶E類電路設(shè)計(jì) 7.8 實(shí)際的高效率RF和微波功率放大器 參考文獻(xiàn) 第8章 寬帶功率放大器 8.1 Bode—Fan0準(zhǔn)則 8.2 具有集中元件的匹配網(wǎng)絡(luò) 8.3 使用混合集中和分布元件的匹配網(wǎng)絡(luò) 8.4 具有傳輸線的匹配網(wǎng)絡(luò) 8.5 有耗匹配網(wǎng)絡(luò) 8.6 實(shí)際設(shè)計(jì)一瞥 參考文獻(xiàn) 第9章 通信系統(tǒng)中的功率放大器設(shè)計(jì) 9.1 Kahn包絡(luò)分離和恢復(fù)技術(shù) 9.2 包絡(luò)跟蹤 9.3 異相功率放大器 9.4 Doherty功率放大器方案 9.5 開關(guān)模式和雙途徑功率放大器 9.6 前饋線性化技術(shù) 9.7 預(yù)失真線性化技術(shù) 9.8 手持機(jī)應(yīng)用的單片cMOS和HBT功率放大器 參考文獻(xiàn)
標(biāo)簽: 射頻 微波功率 放大器設(shè)計(jì)
上傳時(shí)間: 2013-04-24
上傳用戶:W51631
射頻功率放大器存在于各種現(xiàn)代無線通信系統(tǒng)的末端,所以射頻功率放大器性能的優(yōu)劣直接影響到整個(gè)通信系統(tǒng)的性能指標(biāo)。如何在兼顧效率的前提下提高功放的線性度是近年來國內(nèi)外的研究熱點(diǎn),在射頻功率放大器的設(shè)計(jì)過程中這是非常重要的問題。 作為發(fā)射機(jī)末端的重要模塊,射頻功率放大器的主要任務(wù)是給負(fù)載天線提供一定功率的發(fā)射信號(hào),因此射頻功率放大器一般都工作在大信號(hào)條件下。所以設(shè)計(jì)射頻功率放大器時(shí),器件的選型和設(shè)計(jì)方式都和一般的小信號(hào)放大器不同,尤其在寬帶射頻功率放大器的設(shè)計(jì)過程中,由于工作頻帶很寬,且要綜合考慮線性度和效率問題,所以射頻功率放大器的設(shè)計(jì)難度很大。 本文設(shè)計(jì)了一個(gè)工作頻帶為30-108MHz,增益為25dB的寬帶射頻功率放大器。由于工作頻帶較寬,輸出功率較大,線性度要求高;所以在實(shí)際的過程中采用了寬帶匹配,功率回退等技術(shù)來達(dá)到最終的設(shè)計(jì)目標(biāo)。 本文首先介紹了關(guān)于射頻功率放大器的一些基礎(chǔ)理論,包括器件在射頻段的工作模型,使用傳輸線變壓器實(shí)現(xiàn)阻抗變換的基本原理,S參數(shù)等,這些是設(shè)計(jì)射頻功率放大器的基本理論依據(jù)。然后本文描述了射頻功率放大器非線性失真產(chǎn)生的原因,在此基礎(chǔ)上介紹了幾種線性化技術(shù)并做出比較。然后本文介紹了射頻功率放大器的主要技術(shù)指標(biāo)并提出一種具體的設(shè)計(jì)方案,最后利用ADS軟件對(duì)設(shè)計(jì)方案進(jìn)行了仿真。仿真過程包括兩個(gè)步驟,首先是進(jìn)行直流仿真來確定功放管的靜態(tài)工作點(diǎn),然后進(jìn)行功率增益即S21的仿真并達(dá)到設(shè)計(jì)要求。
上傳時(shí)間: 2013-07-28
上傳用戶:gtf1207
用AD8362制作功率計(jì),用于測(cè)量射頻功率
上傳時(shí)間: 2014-12-23
上傳用戶:ArmKing88
介紹由傳輸線變壓器(又稱為魔T 混合網(wǎng)絡(luò)) 構(gòu)成功率合成和功率分配的工作原理以及在射頻大功率放大器中的應(yīng)用。
標(biāo)簽: 傳輸線變壓器 中的應(yīng)用 射頻功率放大器
上傳時(shí)間: 2014-08-15
上傳用戶:ghostparker
利用MOS場(chǎng)效應(yīng)管(MOSFET),采取AB類推挽式功率放大方式,采用傳輸線變壓器寬帶匹配技術(shù),設(shè)計(jì)出一種寬頻帶高功率射頻脈沖功率放大器模塊,其輸出脈沖功率達(dá)1200W,工作頻段0.6M~10MHz。調(diào)試及實(shí)用結(jié)果表明,該放大器工作穩(wěn)定,性能可靠
上傳時(shí)間: 2013-11-17
上傳用戶:waitingfy
設(shè)計(jì)了一種可在CMOS射頻功率放大器中用于功率合成的寬帶變壓器。通過對(duì)變壓器的并聯(lián)和串聯(lián)兩種功率合成形式進(jìn)行分析與比較,指出了匝數(shù)比、功率單元數(shù)目以及寄生電阻對(duì)變壓器功率合成性能的影響;提出了一種片上變壓器的設(shè)計(jì)方法,即采用多層金屬疊層并聯(lián)以及將功放單元內(nèi)置于變壓器線圈中的方式,解決了在CMOS工藝中設(shè)計(jì)變壓器時(shí)面臨的寄生電阻過大及有效耦合長度不足等困難。設(shè)計(jì)的變壓器在2~3 GHz頻段內(nèi)的損耗小于1.35 dB,其功率合成效率高達(dá)76 以上,適合多模多頻段射頻前端的應(yīng)用。
標(biāo)簽: CMOS 射頻功率放大器 變壓器 合成技術(shù)
上傳時(shí)間: 2014-12-24
上傳用戶:ewtrwrtwe
主要介紹了高效率E類射頻功率振蕩器的原理和設(shè)計(jì)方法,通過電路等效變換,E類射頻功率振蕩器最終轉(zhuǎn)換成與E類放大器相同的結(jié)構(gòu),MOS管工作在軟開關(guān)狀態(tài),漏極高電壓、大電流不會(huì)同時(shí)交疊,大大降低了功率損耗,在同等工作條件下,能夠獲得與E類放大器相似的高效率。文中以ARF461型LDMOS做為功率器件,結(jié)合E類射頻振蕩器在等離子體源中的應(yīng)用,給出了的設(shè)計(jì)實(shí)例。ADS仿真結(jié)果表明,在13.56MHz的工作頻率下,振蕩器輸出功率46W,效率為92%,符合設(shè)計(jì)預(yù)期。
上傳時(shí)間: 2014-02-10
上傳用戶:yczrl
一個(gè)用 J2ME 開發(fā)的小蜜蜂遊戲 , 內(nèi)容是像早期的小蜜蜂一樣的射擊遊戲, 是想寫射擊遊戲最佳的參考源碼
上傳時(shí)間: 2015-05-05
上傳用戶:jackgao
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1