亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

您現在的位置是:首頁 > 技術閱讀 >  漫談圓周率的發展歷程

漫談圓周率的發展歷程

時間:2024-01-21



在平面圖形中,圓無疑是最美麗的。有了圓,我們的世界才變得美妙神奇。現在出土的很多青銅器大部分都是呈圓形,說明早在殷商之前中國人就已經對圓有了感性認識。中國古代的天圓地方觀念深入人心,更說明了中國古代先民對圓這一形狀的感性認識,“圓滿”也成為中國傳統文化所追求的理想境界。

━━━━ 

正是基于對圓這種特殊造型的崇拜,使得中國人很早就對圓的大量的感性認識進行思考總結。“規者,正圓之器也。”漢代畫像石《伏羲女媧天地日月》圖中伏羲左手執矩,女媧右手持規。由此可見,中國古代從很早就開始認識圓,也開始了對于圓周率的計算。

2000多年前,中國古代典籍中就有了關于圓的精確記載。成書于約公元前4世紀的《墨經》中,已經給出了關于圓的精確定義:“圓,一中同長也。”也就是說每個圓只有一個中心點,也就是圓心,從圓心到圓周作直線,長度都相等。墨子關于圓的定義是世界上最早的關于圓的定義,與歐幾里得幾何學中圓的定義完全一致。

在容器制造、工程設計和各門科學中只要涉及到圓的計算都離不開圓周率。圓周率是圓的周長和直徑的比值。我們可以自己動手,用一個圓形的碗(或者其他物品)、棉線和直尺,做一個簡單的小實驗。通過測量碗的周長和碗的直徑,然后用周長除以直徑,得到的比值始終接近3.14。這個比值和圓的大小沒有關系,也就是說對任何一個圓,無論圓的大小如何,其周長和直徑的比值都等于同一個常數。從另一方面來說,如果您沒有得到3.14,那就說明您的實驗工具并不是標準的圓或者測量不規范。

1706年,英國數學家威廉·瓊斯(1675—1749)首先使用希臘字母π表示圓周率。瑞士數學家歐拉(1707—1783)預測到圓周率在微積分乃至整個數學研究中的重要地位,在1748年出版的一本微積分教材中,建議用π表示圓周率,此后π成為國際通用的圓周率符號。1913年,日本數學家三上義夫(1875—1950)在《中日數學發展史》中,建議將355/113稱為“π的祖沖之分數值”。

中國科學家茅以升(1896—1989)“因感于圓周率史跡”,嘗試探討了近代中國“學術不振,逐漸淪喪”的原因。1917年4月,茅以升在《科學》雜志發表《中國圓周率略史》,率先把圓周率稱為“祖率”,稱祖沖之的π值是“精麗罕儔,千古獨絕”。下面我們沿著科學發展的軌跡,探尋中國古代數學家對圓周率不斷深入的認識過程。

《周髀算經》是世界上關于圓周率概念的最早記載。該書是最晚成書于公元前1世紀左右的中國早期數學著作,其中明確指出:“圓徑一而周三”。也就是說,對任何一個圓,其周長和直徑的比值是一個常數。圓的周長和其直徑的比值即圓周率等于3。雖然這個比值不夠精確,卻包含了明確的圓周率概念。《九章算術》最遲在東漢前期已經成書,是中國古代第一部數學專著。《九章算術》在計算圓的面積,圓柱和圓錐的體積時,仍然用π=3來計算。

隨著中國古代數學家的研究探索,“圓徑一而周三”這個比值的誤差逐漸被發現并引起了重視。怎樣求得更加精確的圓周率數值,成為中國古代數學的重要課題。  

文章來源:科普時報

了解詳情:

http://4vshop.reezitop.com/wap/cxzs.html


IEEE Spectrum

《科技縱覽》

官方微信公眾平臺



往期推薦

昨天圓周率日:古人是怎么算出了3.14的?

六阻態憶阻器開啟不可思議的計算之門

肖克利的機器人夢,這位物理學家的機器人

勞動力設想是如何催生硅谷的

主站蜘蛛池模板: 周至县| 玉山县| 平南县| 宁德市| 江津市| 泸定县| 启东市| 雷山县| 黑山县| 韶关市| 云霄县| 墨竹工卡县| 正蓝旗| 黎城县| 察哈| 肃宁县| 盐城市| 当阳市| 蕉岭县| 都昌县| 武义县| 正镶白旗| 吴川市| 天气| 台北市| 湖北省| 肥城市| 合阳县| 睢宁县| 桐梓县| 乌拉特中旗| 文安县| 寿宁县| 瑞安市| 云梦县| 万安县| 崇仁县| 霍邱县| 开化县| 隆尧县| 裕民县|