子空間模式識別方法 - 免費下載

單片機編程資源 文件大小:221 K

?? 資源詳細信息

文件格式
PDF
所屬分類
上傳用戶
上傳時間
文件大小
221 K
所需積分
2 積分
推薦指數
????? (5/5)

?? 溫馨提示:本資源由用戶 tzxiaojian 上傳分享,僅供學習交流使用。如有侵權,請聯系我們刪除。

資源簡介

提出了一種改進的LSM-ALSM子空間模式識別方法,將LSM的旋轉策略引入ALSM,使子空間之間互不關聯的情況得到改善,提高了ALSM對相似樣本的區分能力。討論中以性能函數代替經驗函數來確定拒識規則的參數,實現了識別率、誤識率與拒識率之間的最佳平衡;通過對有限字符集的實驗結果表明,LSM-ALSM算法有效地改善了分類器的識別率和可靠性。
關 鍵 詞 學習子空間; 性能函數; 散布矩陣; 最小描述長度
在子空間模式識別方法中,一個線性子空間代表一個模式類別,該子空間由反映類別本質的一組特征矢量張成,分類器根據輸入樣本在各子空間上的投影長度將其歸為相應的類別。典型的子空間算法有以下三種[1, 2]:CLAFIC(Class-feature Information Compression)算法以相關矩陣的部分特征向量來構造子空間,實現了特征信息的壓縮,但對樣本的利用為一次性,不能根據分類結果進行調整和學習,對樣本信息的利用不充分;學習子空間方法(Leaning Subspace Method, LSM)通過旋轉子空間來拉大樣本所屬類別與最近鄰類別的距離,以此提高分類能力,但對樣本的訓練順序敏感,同一樣本訓練的順序不同對子空間構造的影響就不同;平均學習子空間算法(Averaged Learning Subspace Method, ALSM)是在迭代訓練過程中,用錯誤分類的樣本去調整散布矩陣,訓練結果與樣本輸入順序無關,所有樣本平均參與訓練,其不足之處是各模式的子空間之間相互獨立。針對以上問題,本文提出一種改進的子空間模式識別方法。
子空間模式識別的基本原理
1.1 子空間的分類規則
子空間模式識別方法的每一類別由一個子空間表示,子空間分類器的基本分類規則是按矢量在各子空間上的投影長度大小,將樣本歸類到最大長度所對應的類別,在類x()iω的子空間上投影長度的平方為
()211,2,,()argmax()jMTkkjpg===Σx􀀢 (1)
式中 函數稱為分類函數;為子空間基矢量。兩類的分類情況如圖1所示。

立即下載此資源

提示:下載后請用壓縮軟件解壓,推薦使用 WinRAR 或 7-Zip

資源說明

?? 下載說明

  • 下載需消耗 2積分
  • 24小時內重復下載不扣分
  • 支持斷點續傳
  • 資源永久有效

?? 使用說明

  • 下載后用解壓軟件解壓
  • 推薦 WinRAR 或 7-Zip
  • 如有密碼請查看說明
  • 解壓后即可使用

?? 積分獲取

  • 上傳資源獲得積分
  • 每日簽到免費領取
  • 邀請好友注冊獎勵
  • 查看詳情 →

相關標簽

點擊標簽查看更多相關資源:

相關資源推薦