基于自適應時頻分析方法的心音信號分析研究.rar - 免費下載

學術論文資源 文件大小:8786 K

?? 資源詳細信息

文件格式
RAR
所屬分類
上傳用戶
上傳時間
文件大小
8786 K
所需積分
2 積分
推薦指數
????? (5/5)

?? 溫馨提示:本資源由用戶 wangcong200500 上傳分享,僅供學習交流使用。如有侵權,請聯系我們刪除。

資源簡介

心音信號是人體最重要的生理信號之一,包含心臟各個部分如心房、心室、大血管、心血管及各個瓣膜功能狀態的大量生理病理信息。心音信號分析與識別是了解心臟和血管狀態的一種不可缺少的手段。本文針對目前該研究領域中存在的分析方法問題和分類識別技術難點展開了深入的研究,內容涉及心音構成的分析、心音信號特征向量的提取、正常心音信號(NM)和房顫(AF)、主動脈回流(AR)、主動脈狹窄(AS)、二尖瓣回流(MR)4種心臟雜音信號的分類識別。本文的工作內容包括以下5個方面: a)心音信號采集與預處理。本文采用自行研制的帶有錄音機功能的聽診器實現對心音信號的采集。通過對心音信號噪聲分析,選用小波降噪作為心音信號的濾波方法。根據實驗分析,選擇Donoho閾值函數結合多級閾值的方法作為心音信號預處理方案。 b)心音信號時頻分析方法。文中采用5種時頻分析方法分別對心音信號進行了時頻譜特性分析,結果表明:不同的時頻分析方法與待分析心音信號的特性有密切關系,即需要在小的交叉項干擾與高的時頻分辨率之間作綜合的考慮。鑒于此,本文提出了一種自適應錐形核時頻(ATF)分析方法,通過實驗驗證該分布能較好地反映心音信號的時頻結構,其性能優于一般錐形核分布(CKD)以及Choi-Williams分布(CWD)、譜圖(SPEC)等固定核時頻分析方法,從而選擇自應錐形核時頻分析方法進行心音信號分析。 c)心音信號特征向量提取。根據對3M Littmann() Stethoscopes[31]數據庫中標準心音信號的時頻分析結果,提取8組特征數據,通過Fihser降維處理方法提取出了實現分類可視化,且最易于分類的心音信號的2維特征向量,作為心音信號分類的特征向量。 d)心音信號分類方法。根據心音信號特征向量組成的散點圖,研究了支持向量機核函數、多分類支持向量機的選取方法,同時,基于分類的目的 性和可信性,本文提出以分類精度最大為判斷準則的核函數參數與松弛變量的優化方法,建立了心音信號分類的支持向量機模型,選取標準數據庫中NM、AF、AR、AS、MR每類心音信號的80組2維特征向量中每類60組數據作為支持向量機的學習樣本,對余下的每類20組數據進行測試,得到每類的分類精度(Ar)均為100%,同時對臨床上采集的與上述4種同類心臟雜音信號和正常心音信號中每類24個心動周期進行分類實測,分類精度分別為:NM、AF、MR的分類精度均為100%,而AR、AS均為95.83%,驗證了該方法的分類有效性。 e)心音信號分析與識別的軟件系統。本文以MATLAB語言的可視化功能實現了心音信號分析與識別的軟件運行平臺構建,可完成對心音信號的讀取、預處理,繪制時-頻、能量特性的三維圖及兩維等高線圖;同時,利用MATLAB與EXCEL的動態鏈接,實現對心音信號分析數據的存儲以及統計功能;最后,通過對心音信號2維特征向量的分析,實現心音信號的自動識別功能。 本文的研究特色主要體現在心音信號特征向量提取的方法以及多分類支持向量機模型的建立兩方面。 綜上所述,本文從理論與實踐兩方面對心音信號進行了深入的研究,主要是采用自適應錐形核時頻分析方法提取心音信號特征向量,根據心音信號特征向量組成的散點圖,建立心音信號分類的支持向量機模型,并對正常心音信號和4種心臟雜音信號進行了分類研究,取得了較為滿意的分類結果,但由于用于分類的心臟雜音信號種類及數據量尚不足,因此,今后的工作重點是采集更多種類的心臟雜音信號,進一步提高心音信號分類精度,使本文研究成果能最終應用于臨床心臟量化聽診。 關鍵詞:心音信號,小波降噪,非平穩信號,心臟雜音,信號處理,時頻分析,自適應,支持向量機

源碼文件列表

?? 共 1 個源碼文件 點擊文件名可在線查看源代碼

??
溫馨提示:點擊文件名或"查看源碼"按鈕可在線瀏覽源代碼,支持語法高亮顯示。

立即下載此資源

提示:下載后請用壓縮軟件解壓,推薦使用 WinRAR 或 7-Zip

資源說明

?? 下載說明

  • 下載需消耗 2積分
  • 24小時內重復下載不扣分
  • 支持斷點續傳
  • 資源永久有效

?? 使用說明

  • 下載后用解壓軟件解壓
  • 推薦 WinRAR 或 7-Zip
  • 如有密碼請查看說明
  • 解壓后即可使用

?? 積分獲取

  • 上傳資源獲得積分
  • 每日簽到免費領取
  • 邀請好友注冊獎勵
  • 查看詳情 →

相關標簽

點擊標簽查看更多相關資源:

相關資源推薦