Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵 - 免費下載

人工智能/神經網絡資源 文件大小:12 K

?? 資源詳細信息

文件格式
RAR
上傳用戶
上傳時間
文件大小
12 K
所需積分
2 積分
推薦指數
????? (5/5)

?? 溫馨提示:本資源由用戶 szdoudou 上傳分享,僅供學習交流使用。如有侵權,請聯系我們刪除。

資源簡介

Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵,是使被記憶的模式樣本對應網絡能量函數的極小值。 設有M個N維記憶模式,通過對網絡N個神經元之間連接權 wij 和N個輸出閾值θj的設計,使得: 這M個記憶模式所對應的網絡狀態正好是網絡能量函數的M個極小值。 比較困難,目前還沒有一個適應任意形式的記憶模式的有效、通用的設計方法。 H網的算法 1)學習模式——決定權重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個神經元j、i間的權重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數 ap(s):第p個模式的第s個要素(-1或1) wij:第j個神經元與第i個神經元間的權重 i = j時,wij=0,即各神經元的輸出不直接返回自身。 2)想起模式: 神經元輸出值的初始化 想起時,一般是未知的輸入。設xi(0)為未知模式的第i個要素(-1或1) 將xi(0)作為相對應的神經元的初始值,其中,0意味t=0。 反復部分:對各神經元,計算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經元總數 f()--Sgn() θi—神經元i發火閾值 反復進行,直到各個神經元的輸出不再變化。

源碼文件列表

?? 共 12 個源碼文件 點擊文件名可在線查看源代碼

??
溫馨提示:點擊文件名或"查看源碼"按鈕可在線瀏覽源代碼,支持語法高亮顯示。

立即下載此資源

提示:下載后請用壓縮軟件解壓,推薦使用 WinRAR 或 7-Zip

資源說明

?? 下載說明

  • 下載需消耗 2積分
  • 24小時內重復下載不扣分
  • 支持斷點續傳
  • 資源永久有效

?? 使用說明

  • 下載后用解壓軟件解壓
  • 推薦 WinRAR 或 7-Zip
  • 如有密碼請查看說明
  • 解壓后即可使用

?? 積分獲取

  • 上傳資源獲得積分
  • 每日簽到免費領取
  • 邀請好友注冊獎勵
  • 查看詳情 →

相關標簽

點擊標簽查看更多相關資源:

相關資源推薦