?? initializepso.m
字號:
function [pop,pbest,gbest]=initializepso(num, bounds, evalFN,evalOps,options)
% function [pop]=initializepso(populationSize, variableBounds,evalFN,
% evalOps,options)
% initializega creates a matrix of random numbers with
% a number of rows equal to the populationSize and a number
% columns equal to the number of rows in bounds plus 1 for
% the f(x) value which is found by applying the evalFN.
% This is used by the ga to create the population if it
% is not supplied.
%
% pop - the initial, evaluated, random population
% populatoinSize - the size of the population, i.e. the number to create
% variableBounds - a matrix which contains the bounds of each variable, i.e.
% [var1_high var1_low; var2_high var2_low; ....]
% evalFN - the evaluation fn, usually the name of the .m file for
% evaluation
% evalOps - any options to be passed to the eval function defaults []
% options - options to the initialize function, ie.
% [type prec] where eps is the epsilon value
% and the second option is 1 for float and 0 for binary,
% prec is the precision of the variables defaults [1e-6 1]
%rand('seed',512341234)
D=size(bounds,1);
pop=zeros(num,2*D+1);
diff=bounds(:,2)-bounds(:,1);
for m=1:D
pop(:,m)=bounds(m,1)+rand(num,1)*diff(m);
end
for m=D+1:2*D
pop(:,m)=(rand(num,1)-0.5)*2*diff(m-D);
end
for m=1:num
eval(['[sol,val]=' evalFN '(pop(m,1:2),1);']);
% [sol,val]=fitness(pop(m,1:2),1);
pop(m,2*D+1)=val;
end
pbest(:,1:D)=pop(:,1:D);
pbest(:,D+1)=pop(:,2*D+1);
[y,n]=max(pop(:,2*D+1));
gbest(1,1:D)=pop(n,1:D);
gbest(1,D+1)=pop(n,2*D+1);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -