?? data_structure
字號:
The routines use a common data structure 'hmm' with fields:hmm.train.cyc max number of cycles through data .tol termination tolerance of likelihood .rdisplay continous output of free energy values .FrEn free energy terms for each iteration .Xi joint probability of past and future states conditioned on data .Gamma probability of states conditioned on data .Gammasum expectation of Gamma over timehmm.data.Xtrain cell array containing training data .T length of training sequence .obsmodel name of observation model 'Gauss' - Gaussian 'LIKE' - observations are likelihoods 'Poisson' - Poisson 'Dirichlet' - Discrete .K dimension of state-space .Pi expected initial state probability .P expected state transition probabilities .gmmll log-likelihood of gmm model used for initialisation .mix Gaussian mixture model trained on same data .train.init initialisation flag (1 or 0) .obsupdate update observation model (1 or 0) .pupdate update transition matrix (1 or 0) .Dir2d_alpha posterior 2-D Dirichlet for Tx Probabilities .Dir_alpha posterior Dirichlet for intial state Probabilities .prior.Dir2d_alpha 2-D Dirichlet prior for Tx Probabilities .Dir_alpha Dirichlet prior for initial state ProbabilitiesFor 'Gauss' observation models we also have:hmm.state(:) .Mu Expectation of Posterior for mean .Cov Expectation of Posterior for Covariance .Norm_Mu Posterior for mean: mean (1,dimension(data)) .Norm_Cov Posterior for mean: covariance .Norm_Prec Posterior for mean: precision .Wish_alpha Posterior for Covariance: scale parameter .Wish_B Posterior for Covariance: shape matrix .Wish_iB inverse of .Wish_B .prior priors for each state .Norm_Mu Prior for mean: mean (1,dimension(data)) .Norm_Cov Prior for mean: covariance .Norm_Prec Prior for mean: precision .Wish_alpha Prior for Covariance: scale parameter .Wish_B Prior for Covariance: shape matrix .Wish_iB inverse of .Wish_B .Wish_k dimension of BFor 'Poisson' observation models we also have:hmm.state(k) .Gamma_alpha Posterior for rate: scale parameter .Gamma_beta Posterior for rate: shape parameter .prior priors for each state .Gamma_alpha prior for rate: scale parameter .Gamma_beta prior for rate: shape parameterFor 'Dirichlet' observation models we also have:hmm.state(k) .Dir_alpha posterior for cell Probabilities .prior priors for each state .Dir_alpha prior for cell Probabilities For 'LIKE' observation models, there are no extra parameters.
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -