?? ellie.c
字號:
/* ellie.c * * Incomplete elliptic integral of the second kind * * * * SYNOPSIS: * * double phi, m, y, ellie(); * * y = ellie( phi, m ); * * * * DESCRIPTION: * * Approximates the integral * * * phi * - * | | * | 2 * E(phi_\m) = | sqrt( 1 - m sin t ) dt * | * | | * - * 0 * * of amplitude phi and modulus m, using the arithmetic - * geometric mean algorithm. * * * * ACCURACY: * * Tested at random arguments with phi in [-10, 10] and m in * [0, 1]. * Relative error: * arithmetic domain # trials peak rms * DEC 0,2 2000 1.9e-16 3.4e-17 * IEEE -10,10 150000 3.3e-15 1.4e-16 * * *//*Cephes Math Library Release 2.8: June, 2000Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier*//* Incomplete elliptic integral of second kind */#include "mconf.h"extern double PI, PIO2, MACHEP;#ifdef ANSIPROTextern double sqrt ( double );extern double fabs ( double );extern double log ( double );extern double sin ( double x );extern double tan ( double x );extern double atan ( double );extern double floor ( double );extern double ellpe ( double );extern double ellpk ( double );double ellie ( double, double );#elsedouble sqrt(), fabs(), log(), sin(), tan(), atan(), floor();double ellpe(), ellpk(), ellie();#endifdouble ellie( phi, m )double phi, m;{double a, b, c, e, temp;double lphi, t, E;int d, mod, npio2, sign;if( m == 0.0 ) return( phi );lphi = phi;npio2 = floor( lphi/PIO2 );if( npio2 & 1 ) npio2 += 1;lphi = lphi - npio2 * PIO2;if( lphi < 0.0 ) { lphi = -lphi; sign = -1; }else { sign = 1; }a = 1.0 - m;E = ellpe( a );if( a == 0.0 ) { temp = sin( lphi ); goto done; }t = tan( lphi );b = sqrt(a);/* Thanks to Brian Fitzgerald <fitzgb@mml0.meche.rpi.edu> for pointing out an instability near odd multiples of pi/2. */if( fabs(t) > 10.0 ) { /* Transform the amplitude */ e = 1.0/(b*t); /* ... but avoid multiple recursions. */ if( fabs(e) < 10.0 ) { e = atan(e); temp = E + m * sin( lphi ) * sin( e ) - ellie( e, m ); goto done; } }c = sqrt(m);a = 1.0;d = 1;e = 0.0;mod = 0;while( fabs(c/a) > MACHEP ) { temp = b/a; lphi = lphi + atan(t*temp) + mod * PI; mod = (lphi + PIO2)/PI; t = t * ( 1.0 + temp )/( 1.0 - temp * t * t ); c = ( a - b )/2.0; temp = sqrt( a * b ); a = ( a + b )/2.0; b = temp; d += d; e += c * sin(lphi); }temp = E / ellpk( 1.0 - m );temp *= (atan(t) + mod * PI)/(d * a);temp += e;done:if( sign < 0 ) temp = -temp;temp += npio2 * E;return( temp );}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -