?? asptsovlms.m
字號:
% [w,y,e,xb]= asptsovlms(xn,xb,w,d,mu,L1,L2,alg) %% Sample per sample filtering and coefficient update using the
% Second Order Volterra Least Mean Squares or one of its variants.
% The LMS variants currently supported are the sign, sign-sign,
% and signed regressor algorithms.
% % Input Parameters [size] :: % xn : new input sample [1 x 1]
% xb : buffer of input samples [L1 + sum(1:L2) x 1]
% w : vector of filter coefficients w(n-1) [L1 + sum(1:L2) x 1]
% d : desired output d(n) [1 x 1]
% mu : adaptation constant [2 x 1]
% L1 : memory length of linear part of w
% L2 : memory length of non-linear part of w
% alg : specifies the variety of the lms to use in the
% update equation. Must be one of the following:
% 'lms' [default]
% 'slms' - sign LMS, uses sign(e)
% 'srlms' - signed regressor LMS, uses sign(x)
% 'sslms' - sign-sign LMS, uses sign(e) and sign(x)
% Output parameters ::% w : updated filter coefficients w(n)
% y : filter output y(n)
% e : error signal; e(n) = d(n) - y(n)
% xb : updated vector of input samples
%
% SEE ALSO INIT_SOVLMS, ASPTSOVNLMS, ASPTLMS.% Author : John Garas PhD.% Version 2.1, Release October 2002.% Copyright (c) DSP ALGORITHMS 2000-2002.
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -