?? init_sovrls.m
字號:
% [w,x,d,y,e,R]=init_sovrls(L1,L2,b,w0,x0,d0)
%
% Creates and initializes the variables required for the
% Second Order Volterra Recursive Least Squares (RLS)
% Adaptive Filter.
% % Input Parameters [size]:: % L1 : memory length of the linear part of the adaptive filter
% L2 : memory length of the non-linear part of the adaptive filter
% b : a small +ve constant to initialize R
% w0 : initial coefficient vector [L1 + sum(1:L2) x 1]
% x0 : initial input samples vector [L1 + sum(1:L2) x 1]
% d0 : initial desired sample [1 x 1]
% Output parameters [default]::% w : Initialized filter coefficients [zeros]
% x : Initialized input vector [zeros]
% d : Initialized desired sample [white noise]
% y : Initialized filter output [y = w' * x]
% e : Initialized error sample [e = d - y]
% R : Initialized inverse of the weighted
% auto correlation matrix of x, [R=b*eye(L1 + sum(1:L2))]
%
% SEE ALSO ASPTSOVRLS
% Author : John Garas PhD.% Version 2.1, Release October 2002.% Copyright (c) DSP ALGORITHMS 2000-2002.
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -