?? readme
字號(hào):
$Id: README,v 1.5 1998/03/16 08:21:26 kanungo Exp kanungo $Package: UMDHMM version 1.02Author: Tapas Kanungo (kanungo@cfar.umd.edu)Organization: University of Maryland, Collge Park, MDWeb: http://www.cfar.umd.edu/~kanungoDate: 19 February, 1998 Updated on 5 May, 1999: see CHANGES file.Updated on 6 May, 1999: see CHANGES file.This software contains code for understanding the basicsof hidden Markov models (HMM). The notation used isvery similar to that used by Rabiner and Juang in:- Rabiner, L. R. and B. H. Juang, "Fundamentals of Speech Recognition," Prentice Hall, 1993.- Rabiner, L. R., "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Prov. of IEEE, vol. 77, no. 2, pp. 257-286, 1989.- Rabiner, L. R., and B. H. Juang, "An Introduction to Hidden Markov Models," IEEE ASSP Magazine, vol. 3, no. 1, pp. 4-16, Jan. 1986. ---------------------------------------------Installation:--------------------------------------------- -------------------- UNIX: Dec, Sun Solaris, Linux (redhat): -------------------- Type "make all" at the unix prompt. It should compile the package. -------------------- Microsoft NT/95/98: -------------------- 1. Get the GNU package from: ftp://go.cygnus.com/pub/sourceware.cygnus.com/cygwin/latest/full.exe This package includes gcc and various commands and shells (sh, bash, etc.) that make the PC have a unix like environment. 2. Change to the UMDHMM directory and type "make all". ---------------------------------------------Executables:---------------------------------------------genseq: Generates a symbol sequence using the specified modeltestvit: Generates the most like state sequence for a given symbol sequence, given the HMM, using Viterbi.esthmm: Estimates the HMM from a given symbol sequence using BaumWelch.testfor: Computes log Prob(observation|model) using the Forward algorithm.Note 1: The model test.hmm and sequence test.seq solve exercise 6.3 in the book by Rabiner and Juang (page 341). Just execute the command: prompt% testvit test.hmm test.seqand compare the output with the solution given in the book.---------------------------------------------HMM file format:---------------------------------------------M= <number of symbols>N= <number of states>A:a11 a12 ... a1Na21 a22 ... a2N . . . . . . . . . . . .aN1 aN2 ... aNNB:b11 b12 ... b1Mb21 b22 ... b2M . . . . . . . . . . . .bN1 bN2 ... bNMpi:pi1 pi2 ... piN---------------------------------------------Sample HMM file:---------------------------------------------M= 2N= 3A:0.333 0.333 0.3330.333 0.333 0.3330.333 0.333 0.333B:0.5 0.5 0.75 0.250.25 0.75pi:0.333 0.333 0.333---------------------------------------------Sequence file format:---------------------------------------------T=<seqence lenght>o1 o2 o3 . . . oT---------------------------------------------Sample sequence file:---------------------------------------------T= 101 1 1 1 2 1 2 2 2 2
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -