?? mathhalf.c
字號(hào):
{
L_var1 = L_var1 << 1;
}
}
else
{
/* negative input */
for (swShiftCnt = 0;
!(L_var1 >= LW_MIN && L_var1 < (Longword) 0xc0000000L);
swShiftCnt++)
{
L_var1 = L_var1 << 1;
}
}
}
else
{
swShiftCnt = 0;
}
return (swShiftCnt);
}
/***************************************************************************
*
* FUNCTION NAME: norm_s
*
* PURPOSE:
*
* Get normalize shift count:
*
* A 16 bit number is input (possiblly unnormalized). Output
* the positive (or zero) shift count required to normalize the
* input.
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0 <= swOut <= 15
*
*
*
* IMPLEMENTATION:
*
* Get normalize shift count:
*
* A 16 bit number is input (possiblly unnormalized). Output
* the positive (or zero) shift count required to normalize the
* input.
*
* If zero in input, return 0 as the shift count.
*
* For non-zero numbers, count the number of left shift
* required to get the number to fall into the range:
*
* 0x4000 >= normlzd number >= 0x7fff (positive number)
* or
* 0x8000 <= normlzd number < 0xc000 (negative number)
*
* Return the number of shifts.
*
* This instruction corresponds exactly to the Full-Rate "norm"
* instruction.
*
* KEYWORDS: norm, normalization
*
*************************************************************************/
Shortword norm_s(Shortword var1)
{
short swShiftCnt;
Longword L_var1;
L_var1 = L_deposit_h(var1);
swShiftCnt = norm_l(L_var1);
return (swShiftCnt);
}
/***************************************************************************
*
* FUNCTION NAME: round
*
* PURPOSE:
*
* Round the 32 bit Longword into a 16 bit shortword with saturation.
*
* INPUTS:
*
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0xffff 8000 <= swOut <= 0x0000 7fff.
*
* IMPLEMENTATION:
*
* Perform a two's complement round on the input Longword with
* saturation.
*
* This is equivalent to adding 0x0000 8000 to the input. The
* result may overflow due to the add. If so, the result is
* saturated. The 32 bit rounded number is then shifted down
* 16 bits and returned as a Shortword.
*
*
* KEYWORDS: round
*
*************************************************************************/
Shortword round(Longword L_var1)
{
Longword L_Prod;
L_Prod = L_add(L_var1, 0x00008000L); /* round MSP */
return (extract_h(L_Prod));
}
/***************************************************************************
*
* FUNCTION NAME: shift_r
*
* PURPOSE:
*
* Shift and round. Perform a shift right. After shifting, use
* the last bit shifted out of the LSB to round the result up
* or down.
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0xffff 8000 <= swOut <= 0x0000 7fff.
*
*
* IMPLEMENTATION:
*
* Shift and round. Perform a shift right. After shifting, use
* the last bit shifted out of the LSB to round the result up
* or down.
*
* If var2 is positive perform a arithmetic left shift
* with saturation (see shl() above).
*
* If var2 is zero simply return var1.
*
* If var2 is negative perform a arithmetic right shift (shr)
* of var1 by (-var2)+1. Add the LS bit of the result to var1
* shifted right (shr) by -var2.
*
* Note that there is no constraint on var2, so if var2 is
* -0xffff 8000 then -var2 is 0x0000 8000, not 0x0000 7fff.
* This is the reason the shl function is used.
*
*
* KEYWORDS:
*
*************************************************************************/
Shortword shift_r(Shortword var1, Shortword var2)
{
Shortword swOut,
swRnd;
if (var2 >= 0)
swOut = shl(var1, var2);
else
{
/* right shift */
if (var2 < -15)
{
swOut = 0;
}
else
{
swRnd = shl(var1, var2 + 1) & 0x1;
swOut = add(shl(var1, var2), swRnd);
}
}
return (swOut);
}
/***************************************************************************
*
* FUNCTION NAME: shl
*
* PURPOSE:
*
* Arithmetically shift the input left by var2.
*
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0xffff 8000 <= swOut <= 0x0000 7fff.
*
* IMPLEMENTATION:
*
* If Arithmetically shift the input left by var2. If var2 is
* negative then an arithmetic shift right (shr) of var1 by
* -var2 is performed. See description of shr for details.
* When an arithmetic shift left is performed the var2 LS bits
* are zero filled.
*
* The only exception is if the left shift causes an overflow
* or underflow. In this case the LS bits are not modified.
* The number returned is 0x8000 in the case of an underflow or
* 0x7fff in the case of an overflow.
*
* The shl is equivalent to the Full-Rate GSM "<< n" operation.
* Note that ANSI-C does not guarantee operation of the C ">>"
* or "<<" operator for negative numbers - it is not specified
* whether this shift is an arithmetic or logical shift.
*
* KEYWORDS: asl, arithmetic shift left, shift
*
*************************************************************************/
Shortword shl(Shortword var1, Shortword var2)
{
Shortword swOut;
Longword L_Out;
if (var2 == 0 || var1 == 0)
{
swOut = var1;
}
else if (var2 < 0)
{
/* perform a right shift */
/*-----------------------*/
if (var2 <= -15)
{
if (var1 < 0)
swOut = (Shortword) 0xffff;
else
swOut = 0x0;
}
else
swOut = shr(var1, -var2);
}
else
{
/* var2 > 0 */
if (var2 >= 15)
{
/* saturate */
if (var1 > 0)
swOut = SW_MAX;
else
swOut = SW_MIN;
}
else
{
L_Out = (Longword) var1 *(1 << var2);
swOut = (Shortword) L_Out; /* copy low portion to swOut, overflow
* could have hpnd */
if (swOut != L_Out)
{
/* overflow */
if (var1 > 0)
swOut = SW_MAX; /* saturate */
else
swOut = SW_MIN; /* saturate */
}
}
}
return (swOut);
}
/***************************************************************************
*
* FUNCTION NAME: shr
*
* PURPOSE:
*
* Arithmetic shift right (or left).
* Arithmetically shift the input right by var2. If var2 is
* negative then an arithmetic shift left (shl) of var1 by
* -var2 is performed.
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0xffff 8000 <= swOut <= 0x0000 7fff.
*
* IMPLEMENTATION:
*
* Arithmetically shift the input right by var2. This
* operation maintains the sign of the input number. If var2 is
* negative then an arithmetic shift left (shl) of var1 by
* -var2 is performed. See description of shl for details.
*
* Equivalent to the Full-Rate GSM ">> n" operation. Note that
* ANSI-C does not guarantee operation of the C ">>" or "<<"
* operator for negative numbers.
*
* KEYWORDS: shift, arithmetic shift right,
*
*************************************************************************/
Shortword shr(Shortword var1, Shortword var2)
{
Shortword swMask,
swOut;
if (var2 == 0 || var1 == 0)
swOut = var1;
else if (var2 < 0)
{
/* perform an arithmetic left shift */
/*----------------------------------*/
if (var2 <= -15)
{
/* saturate */
if (var1 > 0)
swOut = SW_MAX;
else
swOut = SW_MIN;
}
else
swOut = shl(var1, -var2);
}
else
{
/* positive shift count */
/*----------------------*/
if (var2 >= 15)
{
if (var1 < 0)
swOut = (Shortword) 0xffff;
else
swOut = 0x0;
}
else
{
/* take care of sign extension */
/*-----------------------------*/
swMask = 0;
if (var1 < 0)
{
swMask = ~swMask << (16 - var2);
}
var1 >>= var2;
swOut = swMask | var1;
}
}
return (swOut);
}
/***************************************************************************
*
* FUNCTION NAME: sub
*
* PURPOSE:
*
* Perform the subtraction of the two 16 bit input variable with
* saturation.
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* swOut
* 16 bit short signed integer (Shortword) whose value
* falls in the range
* 0xffff 8000 <= swOut <= 0x0000 7fff.
*
* IMPLEMENTATION:
*
* Perform the subtraction of the two 16 bit input variable with
* saturation.
*
* swOut = var1 - var2
*
* swOut is set to 0x7fff if the operation results in an
* overflow. swOut is set to 0x8000 if the operation results
* in an underflow.
*
* KEYWORDS: sub, subtraction
*
*************************************************************************/
Shortword sub(Shortword var1, Shortword var2)
{
Longword L_diff;
Shortword swOut;
L_diff = (Longword) var1 - var2;
swOut = saturate(L_diff);
return (swOut);
}
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -