亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? copularnd.m

?? copua是金融數學計算中的一類新模型。本代碼提供了最常用的copula模型
?? M
字號:
function u = copularnd(type,varargin)
%COPULARND Random values from a copula.
%   U = COPULARND('Gaussian',RHO,N) returns a matrix U of random values
%   generated from a Gaussian copula with correlation parameter RHO.  Each
%   column of U comes from a Uniform(0,1) marginal distribution.  If RHO is
%   a scalar correlation coefficient, U is an N-by-2 matrix generated from
%   a bivariate Gaussian copula.  If RHO is a P-by-P correlation matrix, U
%   is an N-by-P matrix generated from a P-variate Gaussian copula.
%
%   U = COPULARND('t',RHO,NU,N) returns a matrix U of random values
%   generated from a t copula with correlation parameter RHO and degrees of
%   freedom NU.  Each column of U comes from a Uniform(0,1) marginal
%   distribution. If RHO is a scalar correlation coefficient, U is an
%   N-by-2 matrix generated from a bivariate t copula.  If RHO is a P-by-P
%   correlation matrix, U is an N-by-P matrix generated from a P-variate t
%   copula.
%
%   U = COPULARND(TYPE,ALPHA,N) returns an N-by-2 matrix of random values
%   generated from the bivariate Archimedean copula with parameter ALPHA.
%   TYPE is one of 'Clayton', 'Frank', or 'Gumbel'.  Each column of U comes
%   from a Uniform(0,1) marginal distribution.
%
%   Example:
%      % Determine the linear correlation coefficient corresponding to a
%      % bivariate Gaussian copula having a rank correlation of -0.5
%      tau = -0.5
%      rho = copulaparam('gaussian',tau)
%
%      % Generate dependent beta random values using that copula
%      u = copularnd('gaussian',rho,100)
%      b = betainv(u,2,2)
%
%      % Verify that those pairs have a sample rank correlation approximately
%      % equal to tau
%      tau_sample = kendall(b)

%   Written by Peter Perkins, The MathWorks, Inc.
%   Revision: 1.0  Date: 2003/09/05
%   This function is not supported by The MathWorks, Inc.
%
%   Requires MATLAB R13, including the Statistics Toolbox.


switch lower(type)

% Elliptical copulas
%
% Random vectors from these copulas can be generated by creating random
% vectors from the multivariate normal (or t) distribution, then
% transforming them to uniform marginals using the normal (or t) CDF.
case 'gaussian'
    if nargin < 3
        error('Requires three input arguments for the Gaussian copula.');
    end
    rho = varargin{1};
    n = varargin{2};
    if numel(rho) == 1
        if (rho < -1 | 1 < rho)
            error('RHO must be a correlation coefficient between -1 and 1, or a positive semidefinite correlation matrix.');
        end
        u = normcdf(mvnrnd([0 0],[1 rho; rho 1],n));
    else
        if ~iscor(rho)
            error('RHO must be a correlation coefficient between -1 and 1, or a positive semidefinite correlation matrix.');
        end
        p = size(rho,1);
        u = normcdf(mvnrnd(zeros(1,p),rho,n));
    end

case 't'
    if nargin < 4
        error('Requires four input arguments for the t copula.');
    end
    rho = varargin{1};
    nu = varargin{2};
    n = varargin{3};
    if ~(0 < nu)
        error('NU must be positive for the t copula.');
    end
    if numel(rho) == 1
        if (rho < -1 | 1 < rho)
            error('RHO must be a correlation coefficient between -1 and 1, or a positive semidefinite correlation matrix.');
        end
        u = tcdf(mvtrnd([1 rho; rho 1],nu,n),nu);
    else
        if ~iscor(rho)
            error('RHO must be a correlation coefficient between -1 and 1, or a positive semidefinite correlation matrix.');
        end
        u = tcdf(mvtrnd(rho,nu,n),nu);
    end

% Archimedean copulas
%
% Random pairs from these copulae can be generated sequentially: first
% generate u1 as a uniform r.v.  Then generate u2 from the conditional
% distribution F(u2 | u1; alpha) by generating uniform random values, then
% inverting the conditional CDF.
case {'clayton' 'frank' 'gumbel'}
    if nargin < 3
        error('Requires three input arguments for an Archimedean copula.');
    end
    alpha = varargin{1};
    if numel(alpha) ~= 1
        error('ALPHA must be a scalar.');
    end
    
    switch lower(type)
    case 'clayton'
        if alpha < 0
            error('ALPHA must be nonnegative for the Clayton copula.');
        end
        n = varargin{2};
        u1 = rand(n,1);
        % The inverse conditional CDF has a closed form for this copula.
        p = rand(n,1);
        if alpha > sqrt(eps)
            u2 = u1.*(p.^(-alpha./(1+alpha)) - 1 + u1.^alpha).^(-1./alpha);
        else
            u2 = p;
        end
        u = [u1 u2];

    case 'frank'
        n = varargin{2};
        u1 = rand(n,1);
        % The inverse conditional CDF has a closed form for this copula.
        p = rand(n,1);
        if abs(alpha) > log(realmax)
            u2 = (u1 < 0) + sign(alpha).*u1; % u1 or 1-u1
        elseif abs(alpha) > sqrt(eps)
            u2 = -log((exp(-alpha.*u1).*(1-p)./p + exp(-alpha))./(1 + exp(-alpha.*u1).*(1-p)./p))./alpha;
%             u2 = -log(1 + (1-exp(alpha))./(exp(alpha) + exp(alpha.*(1-u1)).*(1-p)./p))./alpha;
        else
            u2 = p;
        end
        u = [u1 u2];

    case 'gumbel'
        if alpha < 1
            error('ALPHA must be greater than or equal to 1 for the Gumbel copula.');
        end
        n = varargin{2};
        u1 = rand(n,1);
        % The inverse conditional CDF does not have a closed form for this
        % copula.  The inversion must be done numerically.
        p = rand(n,1);
        u2 = condCDFinv(@gumbelCondCDF,u1,p,alpha);
        u = [u1 u2];
    end

otherwise
    error('Unrecognized copula type: ''%s''',type);
end


function p = gumbelCondCDF(u1,u2,alpha)
%GUMBELCONDCDF Conditional distribution function for the Gumbel copula.
%   P = gumbelCondCDF(U,ALPHA) returns the conditional cumulative distibution
%   function of U2, given U1, for the Gumbel copula.
% logC = -((-log(u1)).^alpha + (-log(u2)).^alpha).^(1./alpha);
nlog1 = -log(u1);
nlog2 = -log(u2);
maxlog = max(nlog1,nlog2);
logC = -maxlog .* ((nlog1./maxlog).^alpha + (nlog2./maxlog).^alpha).^(1./alpha);
p = (-nlog1./logC).^(alpha-1) .* exp(logC)./u1;


function u2 = condCDFinv(condCDF,u1,p,alpha)
%CONDCDFINV Inverse conditional distribution function
%   U2 = CONDCDFINV(CONDCDF,U1,P,ALPHA) returns U2 such that
%
%      CONDCDF(U1,U2,ALPHA) = P,
%
%  where CONDCDF is a function handle to a function that computes the
%  conditional cumulative distribution function of U2 given U1, for an
%  archimedean copula with parameter ALPHA.
%
% CONDCDFINV uses a simple binary chop search.  Newton's method or the
% secant method would probably be faster.

lower = zeros(size(p));
upper = ones(size(p));
width = 1;
tol = 1e-12;
while width > tol
    u2 = .5 .* (lower + upper);
    lo = feval(condCDF,u1,u2,alpha) < p;
    lower(lo) = u2(lo);
    upper(~lo) = u2(~lo);
    width = .5 .* width;
end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲欧洲三级电影| 欧美精品一级二级三级| 日日夜夜一区二区| 伊人开心综合网| 亚洲丝袜另类动漫二区| 亚洲天堂成人网| 自拍偷拍欧美激情| 亚洲综合丁香婷婷六月香| 亚洲欧美日韩一区| 亚洲国产成人高清精品| 亚洲mv在线观看| 午夜精品福利一区二区三区蜜桃| 亚洲欧美日本韩国| 午夜视黄欧洲亚洲| 免费在线观看视频一区| 久久精品72免费观看| 精品在线播放免费| 成人激情校园春色| 色吧成人激情小说| 欧美肥妇bbw| 日韩欧美国产精品一区| 久久久久久影视| 国产精品视频免费| 亚洲成av人**亚洲成av**| 麻豆精品视频在线观看| 国产精品一区二区在线播放| av成人免费在线| 欧美伊人精品成人久久综合97| 8x福利精品第一导航| 欧美www视频| 亚洲色图在线看| 日本中文字幕一区| 国产成a人亚洲| 欧美午夜视频网站| wwwwxxxxx欧美| 一区二区三区日韩欧美| 黄页网站大全一区二区| 99国产麻豆精品| 日韩精品一区二区三区老鸭窝| 亚洲国产激情av| 日产国产欧美视频一区精品| 成人午夜电影小说| 日韩一区二区三区免费观看| 国产精品欧美一级免费| 美女一区二区久久| 色婷婷综合久久| 国产女人18毛片水真多成人如厕| 亚洲图片一区二区| www.亚洲色图.com| 久久久三级国产网站| 亚洲成人综合在线| 91在线免费视频观看| 亚洲一区二区在线视频| 国产麻豆欧美日韩一区| 欧美日韩高清在线播放| 国产精品白丝在线| 激情小说欧美图片| 91精品在线免费观看| 亚洲三级理论片| 高清成人在线观看| 亚洲精品在线一区二区| 日韩国产精品久久| 欧美乱熟臀69xxxxxx| 亚洲精品综合在线| 成人app网站| 久久久久久久久久久99999| 日本v片在线高清不卡在线观看| 91在线视频免费观看| 中文一区在线播放| 国产成人精品免费看| www成人在线观看| 六月丁香综合在线视频| 欧美一区二区日韩| 免费高清成人在线| 欧美一级片免费看| 美女爽到高潮91| 日韩欧美国产系列| 精品一区二区国语对白| 日韩精品一区二区三区在线播放| 免费在线看一区| 精品福利二区三区| 国产麻豆视频一区二区| 亚洲国产精品ⅴa在线观看| 成人免费va视频| 亚洲欧美激情插 | 亚洲va韩国va欧美va| 人人精品人人爱| 欧美一区二区视频观看视频| 午夜电影网一区| 欧美一级在线视频| 久久66热偷产精品| 久久免费看少妇高潮| 成人小视频免费在线观看| 中文文精品字幕一区二区| av资源网一区| 亚洲成人动漫在线免费观看| 欧美精品免费视频| 狠狠色丁香婷综合久久| 亚洲一二三四久久| 欧美日韩亚洲综合在线| 免费在线看成人av| 久久久久国产精品麻豆| 91一区二区在线| 亚洲福利一区二区| av电影天堂一区二区在线观看| 亚洲特级片在线| 欧美精品 日韩| 国产福利一区二区三区在线视频| 国产精品福利在线播放| 欧美日韩aaa| 国产裸体歌舞团一区二区| 国产精品福利一区| 91精品国产综合久久国产大片| 国产精品综合av一区二区国产馆| 中文字幕一区二区三区四区不卡 | 人人精品人人爱| 欧美sm极限捆绑bd| 日韩不卡一二三区| 亚洲精品一区二区三区99| 亚洲福利国产精品| 91同城在线观看| 天天做天天摸天天爽国产一区| 国产aⅴ综合色| 欧美精品一区二区三区蜜桃视频 | 911精品国产一区二区在线| 国产精品美女www爽爽爽| 色成年激情久久综合| 久久嫩草精品久久久精品| 欧美极品xxx| 首页国产欧美日韩丝袜| 国产宾馆实践打屁股91| 欧美精品日韩一本| 中文字幕一区二区不卡| 欧美另类一区二区三区| 91精品国产综合久久久蜜臀粉嫩| 欧美丝袜第三区| 亚洲成人第一页| 国产欧美一区二区三区网站| 国产精品一区二区免费不卡 | 国产精品一区免费在线观看| 日韩欧美亚洲一区二区| 蜜桃av噜噜一区| 337p日本欧洲亚洲大胆精品| 黄页网站大全一区二区| 国产日韩欧美麻豆| 风流少妇一区二区| 一区二区三区不卡视频| 91精品国模一区二区三区| 精一区二区三区| 一区二区三区四区中文字幕| 91精品欧美综合在线观看最新| 国产激情一区二区三区四区| 亚洲免费观看在线观看| 精品国产91久久久久久久妲己| 成人夜色视频网站在线观看| 日韩av一区二| 亚洲欧洲日韩女同| 欧美成人精精品一区二区频| 国产一区999| 国产一区在线视频| 国产sm精品调教视频网站| 奇米在线7777在线精品| 久久久久久久综合日本| 97精品久久久久中文字幕| 精品日韩av一区二区| 99免费精品视频| 成人国产亚洲欧美成人综合网| 婷婷国产在线综合| 亚洲va韩国va欧美va精品| 欧美色综合天天久久综合精品| 亚洲午夜影视影院在线观看| 成a人片亚洲日本久久| 亚洲精品视频一区二区| 亚洲综合在线免费观看| 亚洲国产成人tv| 日韩在线播放一区二区| 蜜桃视频在线观看一区| 美女国产一区二区| 国产伦精品一区二区三区免费 | 成人sese在线| 91首页免费视频| 欧美日韩国产片| 精品久久久久久久久久久院品网 | 久久久www成人免费无遮挡大片| 国产亚洲一区二区在线观看| 一区在线观看免费| 视频一区二区中文字幕| 国产真实精品久久二三区| 99久久精品一区| 56国语精品自产拍在线观看| 久久久久久影视| 亚洲一区二区在线免费看| 精品写真视频在线观看| 99精品一区二区| 日韩午夜精品电影| 中文字幕日韩一区| 免费成人av资源网| 成人免费视频视频在线观看免费 | 天堂影院一区二区| 国产精品一区二区不卡|