亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? quickprop.java

?? 模式識(shí)別中神經(jīng)網(wǎng)絡(luò)方法的實(shí)現(xiàn)
?? JAVA
字號(hào):
/*
	Copyright 2006, 2007 Brian Greer

	This file is part of the Java NN Trainer.

	Java NN Trainer is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	Java NN Trainer is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with Java NN Trainer; if not, write to the Free Software
	Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

package algorithms;

public class QuickProp extends Trainer{
	public static final double DEFAULT_MOMENTUM = 0.9;

	private double momentum = DEFAULT_MOMENTUM; // [0.0-1.0]

	// Inside thresh, do grad descent; outside, jump.
	private double modeSwitchThreshold = 0.0;
	// Don't jump more than this times last step
	private double maxFactor = 1.75;
	private double shrinkFactor = maxFactor / (1.0 + maxFactor);
	// divide epsilon by fan-in before use
	private boolean splitEpsilon = false; //true;
	// For grad descent if last step was (almost) 0
	private double epsilon = 0.55; /* 1.0 */
	// Weight decay
	private double decay = -0.0001;

	private double [][] prevInSlopes = null;
	private double [][] inSlopes = null;
	private double [][] inDeltaWeights = null;

	private double [][] prevOutSlopes = null;
	private double [][] outSlopes = null;
	private double [][] outDeltaWeights = null;

	private NeuralNetwork nn = null;

	public QuickProp(NeuralNetwork nn, double [][] inputs, double [][] targets, double minError){
		super(nn.getNumHidden(), inputs, targets, minError);
		this.nn = nn;
	}

	public QuickProp(int numHidden, double [][] inputs, double [][] targets, double minError){
		super(numHidden, inputs, targets, minError);
		nn = new NeuralNetwork(numInput, numHidden, numOutput);
	}

	public int getType(){
		return Trainer.QUICKPROP;
	}

	public void setMomentum(double momentum){
		this.momentum = momentum;
	}

	public void run(){
		broadcastBegin();

		prevInSlopes = new double[numInput][numHidden];
		inSlopes = new double[numInput][numHidden];
		inDeltaWeights = new double[numInput][numHidden];
		for(int i = 0; i < numInput; i++)
			for(int j = 0; j < numHidden; j++)
				inDeltaWeights[i][j] = prevInSlopes[i][j] = inSlopes[i][j] = 0.0;

		prevOutSlopes = new double[numHidden][numOutput];
		outSlopes = new double[numHidden][numOutput];
		outDeltaWeights = new double[numHidden][numOutput];
		for(int i = 0; i < numHidden; i++)
			for(int j = 0; j < numOutput; j++)
				outDeltaWeights[i][j] = prevOutSlopes[i][j] = outSlopes[i][j] = 0.0;

		double fitness = 1000.0;

		while(fitness > minError && isRunning){
			numGenerations++;

			updateSlopes(inSlopes, prevInSlopes, nn.getInWeights());
			updateSlopes(outSlopes, prevOutSlopes, nn.getOutWeights());

			fitness = 0.0;
			for(int i = 0; i < numPatterns; i++)
				fitness += adjustWeights(inputs[i], targets[i]);
			fitness /= numPatterns;

			nn.setFitness(fitness);

			broadcastGenerationComplete(nn);
		}

		broadcastEnd();
	}

	private void updateSlopes(double [][] slopes, double [][] prevSlopes, double [][] weights){
		int size1 = slopes.length;
		int size2 = slopes[0].length;
		for(int i = 0; i < size1; i++){
			for(int j = 0; j < size2; j++){
				prevSlopes[i][j] = slopes[i][j];
				slopes[i][j] = decay * weights[i][j];
			}
		}
	}

	private double adjustWeights(double [] inputs, double [] targets){
		double [] hidden = new double[numHidden];
		double [] outputs = new double[numOutput];

		nn.activate(inputs, hidden, outputs);

		double [] outError = new double[numOutput];

		for(int i = 0; i < numOutput; i++)
			outError[i] = (targets[i] - outputs[i]) * outputs[i] * (1.0 - outputs[i]);

		double [][] outWeights = nn.getOutWeights();
		double [] hiddenError = new double[numHidden];

		for(int i = 0; i < numHidden; i++){
			double sum = 0.0;
			for(int j = 0; j < numOutput; j++)
				sum += outError[j] * outWeights[i][j];
			hiddenError[i] = sum * hidden[i] * (1.0 - hidden[i]);
		}

		for(int i = 0; i < numInput; i++)
			for(int j = 0; j < numHidden; j++)
				inSlopes[i][j] += hiddenError[j] * hidden[j];

		for(int i = 0; i < numHidden; i++)
			for(int j = 0; j < numOutput; j++)
				outSlopes[i][j] += outError[j] * outputs[j];

		takeStep(nn.getInWeights(), inDeltaWeights, inSlopes, prevInSlopes);
		takeStep(outWeights, outDeltaWeights, outSlopes, prevOutSlopes);

		return NeuralNetwork.sumSquaredError(outputs, targets);
	}

	private void takeStep(double [][] weights, double [][] deltaWeights, double [][] slopes, double [][] prevSlopes){
		int size1 = weights.length;
		int size2 = weights[0].length;

		for(int i = 0; i < size1; i++){
			for(int j = 0; j < size2; j++){
				double nextStep = 0.0;

				if(deltaWeights[i][j] > modeSwitchThreshold){
					if(slopes[i][j] > 0.0)
						nextStep = (splitEpsilon ? ((epsilon * slopes[i][j]) / size1)
						                         : (epsilon * slopes[i][j]));

					if(slopes[i][j] > (shrinkFactor * prevSlopes[i][j]))
						nextStep += maxFactor * deltaWeights[i][j];
					else
						nextStep += (slopes[i][j] / (prevSlopes[i][j] - slopes[i][j])) * deltaWeights[i][j];
				}
				else if(deltaWeights[i][j] < -modeSwitchThreshold){
					if(slopes[i][j] < 0.0)
						nextStep = (splitEpsilon ? ((epsilon * slopes[i][j]) / size1)
						                         : (epsilon * slopes[i][j]));

					if(slopes[i][j] < (shrinkFactor * prevSlopes[i][j]))
						nextStep += maxFactor * deltaWeights[i][j];
					else
						nextStep += (slopes[i][j] / (prevSlopes[i][j] - slopes[i][j])) * deltaWeights[i][j];
				}
				else{
					nextStep = (splitEpsilon ? ((epsilon * slopes[i][j]) / size1)
					                         : (epsilon * slopes[i][j]))
					           + (momentum * deltaWeights[i][j]);
				}

//				System.out.print(slopes[i][j] + "," + nextStep);
//				System.out.print("," + deltaWeights[i][j] + "," + weights[i][j]);
				deltaWeights[i][j] = nextStep;
				weights[i][j] += nextStep;
//				System.out.print("," + deltaWeights[i][j] + "," + weights[i][j]);
//				System.out.println("");
			}
		}
	}
}

// vim:noet:ts=3:sw=3

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美疯狂性受xxxxx喷水图片| 狠狠色狠狠色综合| 91精品国产黑色紧身裤美女| 日本三级韩国三级欧美三级| 日韩精品中文字幕一区二区三区 | 日韩和欧美一区二区三区| 538prom精品视频线放| 久久精品国产亚洲a| 欧美激情在线免费观看| 色诱亚洲精品久久久久久| 日韩中文字幕一区二区三区| 精品国产青草久久久久福利| av成人免费在线| 日本女人一区二区三区| 日韩视频在线观看一区二区| 国产最新精品精品你懂的| 亚洲人一二三区| 日韩精品一区二区三区在线| 99精品国产91久久久久久| 免费成人在线视频观看| 中文字幕一区二区三区精华液| 国产寡妇亲子伦一区二区| 成人一区二区视频| 精品国产精品网麻豆系列| 日本aⅴ亚洲精品中文乱码| 亚洲欧洲精品天堂一级 | 国内精品国产三级国产a久久 | 国产成人综合在线观看| 日韩电影在线一区| 丝袜亚洲另类欧美综合| 亚洲成av人综合在线观看| 一区二区高清视频在线观看| 中文字幕亚洲成人| 亚洲欧洲日产国产综合网| 中文字幕中文字幕一区| 国产日韩欧美麻豆| 欧美激情在线免费观看| 国产欧美中文在线| 国产午夜精品福利| 国产三级一区二区| 欧美激情综合网| 国产精品久久国产精麻豆99网站| 日本一区二区三区在线观看| 国产视频亚洲色图| 国产精品免费久久| 亚洲女同一区二区| 亚洲一区二区三区四区五区黄| 一区二区三区四区乱视频| 一区二区三区中文在线| 亚洲大片精品永久免费| 丝袜亚洲另类丝袜在线| 免费成人av资源网| 国产一区91精品张津瑜| 国产69精品一区二区亚洲孕妇| 成人av电影在线播放| 99精品在线免费| 欧美在线观看18| 欧美一区二区视频在线观看2020 | 制服丝袜国产精品| 日韩欧美国产综合一区| 欧美精品一区二区三区在线播放| 欧美精品一区二区三区很污很色的 | 成人免费电影视频| 91麻豆免费看片| 欧美日本精品一区二区三区| 欧美成人三级电影在线| 国产精品嫩草影院com| 夜夜嗨av一区二区三区| 麻豆精品视频在线观看视频| 国产成人av一区二区三区在线| 99精品久久只有精品| 欧美日韩一级二级| 久久婷婷久久一区二区三区| 国产精品久久久久久久久果冻传媒 | 懂色av噜噜一区二区三区av| 色狠狠综合天天综合综合| 欧美一区二区三区四区视频| 久久欧美中文字幕| 一区二区三区四区不卡在线| 老司机精品视频在线| eeuss鲁片一区二区三区在线观看| 欧美性受xxxx黑人xyx性爽| 欧美xxxxxxxx| 一区二区三区在线免费观看| 精品一区二区免费在线观看| 91在线你懂得| 精品国产免费久久| 夜夜揉揉日日人人青青一国产精品| 人禽交欧美网站| 99r精品视频| 日韩欧美一二区| 综合色中文字幕| 久久国产麻豆精品| 91视视频在线观看入口直接观看www| 欧美群妇大交群中文字幕| 久久亚区不卡日本| 天天综合日日夜夜精品| bt7086福利一区国产| 日韩欧美不卡一区| 亚洲一区二区三区美女| 岛国一区二区三区| 日韩欧美美女一区二区三区| 亚洲精品老司机| 国产经典欧美精品| 欧美一区二区三区色| 亚洲精品国产成人久久av盗摄| 国产精品2024| 日韩精品专区在线影院观看| 亚洲一区二区在线免费看| 丁香天五香天堂综合| 精品国产一区二区三区不卡 | 国产精品―色哟哟| 国内国产精品久久| 69堂国产成人免费视频| 一级特黄大欧美久久久| 成人午夜大片免费观看| 久久久久久亚洲综合影院红桃| 日本午夜精品一区二区三区电影| 在线观看亚洲a| 亚洲欧美一区二区不卡| 成人的网站免费观看| 国产三级欧美三级日产三级99| 久久国产精品99精品国产| 欧美日韩一区二区三区不卡| 亚洲久草在线视频| 成人av资源下载| 久久精品一区二区三区av| 国产在线播精品第三| 欧美一二三区在线观看| 日韩不卡一二三区| 51午夜精品国产| 日本成人在线网站| 欧美一级理论片| 蜜桃视频一区二区三区| 欧美一区二区视频观看视频| 日韩福利电影在线观看| 777a∨成人精品桃花网| 免费人成在线不卡| 日韩久久免费av| 精品一区二区三区蜜桃| 久久嫩草精品久久久精品一| 国内成+人亚洲+欧美+综合在线| 精品理论电影在线| 国产一区在线观看视频| 国产日韩精品一区二区三区 | 日韩区在线观看| 麻豆精品蜜桃视频网站| 欧美tickling挠脚心丨vk| 国内不卡的二区三区中文字幕| 久久在线免费观看| 成人一区二区三区| 亚洲免费av在线| 欧美日韩一区高清| 美腿丝袜亚洲一区| 久久久www免费人成精品| 国产999精品久久久久久| 欧美国产激情二区三区| 日本乱人伦一区| 日韩专区欧美专区| 久久―日本道色综合久久| 国产一区二区看久久| 国产精品高清亚洲| 欧美写真视频网站| 免费看欧美美女黄的网站| 久久久久9999亚洲精品| 99久久伊人精品| 亚洲国产综合视频在线观看| 日韩一区二区三区视频| 国产91丝袜在线18| 亚洲一区在线观看免费 | 1024亚洲合集| 欧美日韩国产综合草草| 国内精品久久久久影院薰衣草| 国产精品久久久久影院亚瑟| 91精品91久久久中77777| 日本视频免费一区| 国产精品伦理在线| 欧美日韩久久久一区| 黄页视频在线91| 亚洲精品一二三| 欧美成人精品福利| av福利精品导航| 麻豆精品在线观看| 亚洲欧美日本在线| 精品日韩99亚洲| 91在线观看免费视频| 久久国产剧场电影| 一区二区三区精品在线| 337p日本欧洲亚洲大胆精品| 欧洲精品在线观看| 国产福利一区二区三区视频| 亚洲无人区一区| 国产精品久久久久久久久久免费看 | 日韩一区二区三区免费看 | 欧美一卡在线观看| 93久久精品日日躁夜夜躁欧美| 麻豆精品在线播放| 亚洲国产人成综合网站| 欧美国产成人精品| 精品欧美一区二区在线观看|