亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? upf_demo.m

?? 無忌卡爾曼粒子濾波
?? M
?? 第 1 頁 / 共 3 頁
字號:
    muPred_pfekf(t) = feval('ffun',xparticle_pfekf(t-1,i),t);
    Jx = 0.5;                                 % Jacobian for ffun.
    PPred_pfekf(t) = Q_pfekf + Jx*Pparticle_pfekf(t-1,i)*Jx'; 
    yPredTmp = feval('hfun',muPred_pfekf(t),t);
    if t<=30,
      Jy = 2*0.2*muPred_pfekf(t);                     % Jacobian for hfun.
    else
      Jy = 0.5;
    end;
    M = R_pfekf + Jy*PPred_pfekf(t)*Jy';                  % Innovations covariance.
    K = PPred_pfekf(t)*Jy'*inv(M);                  % Kalman gain.
    mu_pfekf(t,i) = muPred_pfekf(t) + K*(y(t)-yPredTmp); % Mean of proposal.
    P_pfekf(t) = PPred_pfekf(t) - K*Jy*PPred_pfekf(t);          % Variance of proposal.
    xparticlePred_pfekf(t,i) = mu_pfekf(t,i) + sqrtm(P_pfekf(t))*randn(1,1);
    PparticlePred_pfekf(t,i) = P_pfekf(t);
  end;

  % EVALUATE IMPORTANCE WEIGHTS:
  % ============================
  % For our choice of proposal, the importance weights are give by:  
  for i=1:N,
    yPred_pfekf(t,i) = feval('hfun',xparticlePred_pfekf(t,i),t);        
    lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfekf(t,i))^(2)))+1e-99;
    prior = ((xparticlePred_pfekf(t,i)-xparticle_pfekf(t-1,i))^(g1-1)) ...
		 * exp(-g2*(xparticlePred_pfekf(t,i)-xparticle_pfekf(t-1,i)));
    proposal = inv(sqrt(PparticlePred_pfekf(t,i))) * ...
	       exp(-0.5*inv(PparticlePred_pfekf(t,i)) *((xparticlePred_pfekf(t,i)-mu_pfekf(t,i))^(2)));
    w(t,i) = lik*prior/proposal;      
  end;  
  w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.
  
  % SELECTION STEP:
  % ===============
  % Here, we give you the choice to try three different types of
  % resampling algorithms. Note that the code for these algorithms
  % applies to any problem!
  if resamplingScheme == 1
    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.
  elseif resamplingScheme == 2
    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.
  else  
    outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.  
  end;
  xparticle_pfekf(t,:) = xparticlePred_pfekf(t,outIndex); % Keep particles with
                                              % resampled indices.
  Pparticle_pfekf(t,:) = PparticlePred_pfekf(t,outIndex);  
  
end;   % End of t loop.

time_pfekf(j) = toc;

%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO WITH MCMC  %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%  ======== EKF proposal ==================  %%%%%%%%%%%%%%%%

% INITIALISATION:
% ==============
xparticle_pfekfMC = ones(T,N);        % These are the particles for the estimate
                                      % of x. Note that there's no need to store
                                      % them for all t. We're only doing this to
                                      % show you all the nice plots at the end.
Pparticle_pfekfMC = P0*ones(T,N);     % Particles for the covariance of x.
xparticlePred_pfekfMC = ones(T,N);    % One-step-ahead predicted values of the states.
PparticlePred_pfekfMC = ones(T,N);    % One-step-ahead predicted values of P.
yPred_pfekfMC = ones(T,N);            % One-step-ahead predicted values of y.
w = ones(T,N);                        % Importance weights.
muPred_pfekfMC = ones(T,1);           % EKF O-s-a estimate of the mean of the states.
PPred_pfekfMC = ones(T,1);            % EKF O-s-a estimate of the variance of the states.
mu_pfekfMC = ones(T,1);               % EKF estimate of the mean of the states.
P_pfekfMC = P0*ones(T,1);             % EKF estimate of the variance of the states.

previousXekfMC = ones(T,N);           % Particles at the previous time step. 
previousXResekfMC = ones(T,N);        % Resampled previousX.
previousPekfMC = ones(T,N);           % Covariance particles at the previous time step. 
previousPResekfMC = ones(T,N);        % Resampled previousP.
disp(' ');

tic;                                % Initialize timer for benchmarking

for t=2:T,    
  fprintf('run = %i / %i :  PF-EKF-MCMC : t = %i / %i  \r',j,no_of_runs,t,T);
  fprintf('\n')
  
  % PREDICTION STEP:
  % ================ 
  % We use the EKF as proposal.
  for i=1:N,
    muPred_pfekfMC(t) = feval('ffun',xparticle_pfekfMC(t-1,i),t);
    Jx = 0.5;                                 % Jacobian for ffun.
    PPred_pfekfMC(t) = Q_pfekf + Jx*Pparticle_pfekfMC(t-1,i)*Jx'; 
    yPredTmp = feval('hfun',muPred_pfekfMC(t),t);
    if t<=30,
      Jy = 2*0.2*muPred_pfekfMC(t);                     % Jacobian for hfun.
    else
      Jy = 0.5;
    end;
    M = R_pfekf + Jy*PPred_pfekfMC(t)*Jy';                  % Innovations covariance.
    K = PPred_pfekfMC(t)*Jy'*inv(M);                  % Kalman gain.
    mu_pfekfMC(t,i) = muPred_pfekfMC(t) + K*(y(t)-yPredTmp); % Mean of proposal.
    P_pfekfMC(t) = PPred_pfekfMC(t) - K*Jy*PPred_pfekfMC(t);          % Variance of proposal.
    xparticlePred_pfekfMC(t,i) = mu_pfekfMC(t,i) + sqrtm(P_pfekfMC(t))*randn(1,1);
    PparticlePred_pfekfMC(t,i) = P_pfekfMC(t);
  end;

  previousXekfMC(t,:) = xparticle_pfekfMC(t-1,:);  % Store the particles at t-1. 
  previousPekfMC(t,:) = Pparticle_pfekfMC(t-1,:);  % Store the particles at t-1. 
  
  
  % EVALUATE IMPORTANCE WEIGHTS:
  % ============================
  % For our choice of proposal, the importance weights are give by:  
  for i=1:N,
    yPred_pfekfMC(t,i) = feval('hfun',xparticlePred_pfekfMC(t,i),t);        
    lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfekfMC(t,i))^(2)))+1e-99;
    prior = ((xparticlePred_pfekfMC(t,i)-xparticle_pfekfMC(t-1,i))^(g1-1)) ...
		 * exp(-g2*(xparticlePred_pfekfMC(t,i)-xparticle_pfekfMC(t-1,i)));
    proposal = inv(sqrt(PparticlePred_pfekfMC(t,i))) * ...
	       exp(-0.5*inv(PparticlePred_pfekfMC(t,i)) *((xparticlePred_pfekfMC(t,i)-mu_pfekfMC(t,i))^(2)));
    w(t,i) = lik*prior/proposal;      
  end;  
  w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.
  
  % SELECTION STEP:
  % ===============
  % Here, we give you the choice to try three different types of
  % resampling algorithms. Note that the code for these algorithms
  % applies to any problem!
  if resamplingScheme == 1
    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.
  elseif resamplingScheme == 2
    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.
  else  
    outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.  
  end;
  xparticle_pfekfMC(t,:) = xparticlePred_pfekfMC(t,outIndex); % Keep particles with
                                                         % resampled indices.
  Pparticle_pfekfMC(t,:) = PparticlePred_pfekfMC(t,outIndex);  
  previousXResekfMC(t,:) = previousXekfMC(t,outIndex);  % Resample particles
                                                        % at t-1.
  previousPResekfMC(t,:) = previousPekfMC(t,outIndex);  % Resample particles
                                                        % at t-1.
   
  % METROPOLIS-HASTINGS STEP:
  % ========================
  u=rand(N,1); 
  accepted=0;
  rejected=0;
  for i=1:N,   
    muPred_ekfMCMC = feval('ffun',previousXResekfMC(t,i),t);
    Jx = 0.5;                                     % Jacobian for ffun.
    PPred_ekfMCMC = Q_pfekf + Jx*previousPResekfMC(t,i)*Jx'; 
    yPredTmp = feval('hfun',muPred_ekfMCMC,t);
    if t<=30,
      Jy = 2*0.2*muPred_ekfMCMC;                     % Jacobian for hfun.
    else
      Jy = 0.5;
    end;
    M = R_pfekf + Jy*PPred_ekfMCMC*Jy';                  % Innovations covariance.
    K = PPred_ekfMCMC*Jy'*inv(M);                  % Kalman gain.
    muProp = muPred_ekfMCMC + K*(y(t)-yPredTmp);   % Mean of proposal.
    PProp = PPred_ekfMCMC - K*Jy*PPred_ekfMCMC;          % Variance of proposal.
    xparticleProp = muProp + sqrtm(PProp)*randn(1,1);
    PparticleProp = PProp;   
    
    mProp = feval('hfun',xparticleProp,t);        
    likProp = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-mProp)^(2)))+1e-99;
    priorProp = ((xparticleProp-previousXResekfMC(t,i))^(g1-1)) * exp(-g2*(xparticleProp-previousXResekfMC(t,i)));
    proposalProp = inv(sqrt(PparticleProp)) * exp(-0.5*inv(PparticleProp) *( (xparticleProp-muProp)^(2)));
    m = feval('hfun',xparticle_pfekfMC(t,i),t);        
    lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-m)^(2)))+1e-99;
    prior = ((xparticle_pfekfMC(t,i)-previousXResekfMC(t,i))^(g1-1)) * exp(-g2*(xparticle_pfekfMC(t,i)-previousXResekfMC(t,i)));
    proposal = inv(sqrt(Pparticle_pfekfMC(t,i))) * exp(-0.5*inv(Pparticle_pfekfMC(t,i)) *((xparticle_pfekfMC(t,i)-muProp)^(2)));
    ratio = (likProp*priorProp*proposal)/(lik*prior*proposalProp);
    acceptance = min(1,ratio);
    if u(i,1) <= acceptance 
      xparticle_pfekfMC(t,i) = xparticleProp;
      Pparticle_pfekfMC(t,i) = PparticleProp;
      accepted=accepted+1;
    else
      xparticle_pfekfMC(t,i) = xparticle_pfekfMC(t,i); 
      Pparticle_pfekfMC(t,i) = Pparticle_pfekfMC(t,i);  
      rejected=rejected+1;
    end;
  end;   % End of MCMC loop.
end;   % End of t loop.

time_pfekfMC(j) = toc;

%%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO  %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%  ======== UKF proposal ========  %%%%%%%%%%%%%%%%%%%%%
% INITIALISATION:
% ==============
xparticle_pfukf = ones(T,N);        % These are the particles for the estimate
                                    % of x. Note that there's no need to store
                                    % them for all t. We're only doing this to
                                    % show you all the nice plots at the end.
Pparticle_pfukf = P0*ones(T,N);     % Particles for the covariance of x.
xparticlePred_pfukf = ones(T,N);    % One-step-ahead predicted values of the states.
PparticlePred_pfukf = ones(T,N);    % One-step-ahead predicted values of P.
yPred_pfukf = ones(T,N);            % One-step-ahead predicted values of y.
w = ones(T,N);                      % Importance weights.
mu_pfukf = ones(T,1);               % EKF estimate of the mean of the states.

error=0;
disp(' ');
tic;
for t=2:T,    
  fprintf('run = %i / %i :  PF-UKF : t = %i / %i  \r',j,no_of_runs,t,T);
  fprintf('\n')
  
  % PREDICTION STEP:
  % ================ 
  % We use the UKF as proposal.
  for i=1:N,
    % Call Unscented Kalman Filter
    [mu_pfukf(t,i),PparticlePred_pfukf(t,i)]=ukf1(xparticle_pfukf(t-1,i),Pparticle_pfukf(t-1,i),[],Q_pfukf,'ukf_ffun',y(t),R_pfukf,'ukf_hfun',t,alpha,beta,kappa);
    xparticlePred_pfukf(t,i) = mu_pfukf(t,i) + sqrtm(PparticlePred_pfukf(t,i))*randn(1,1);
  end;

  % EVALUATE IMPORTANCE WEIGHTS:
  % ============================
  % For our choice of proposal, the importance weights are give by:  
  for i=1:N,
    yPred_pfukf(t,i) = feval('hfun',xparticlePred_pfukf(t,i),t);        
    lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfukf(t,i))^(2)))+1e-99;
    prior = ((xparticlePred_pfukf(t,i)-xparticle_pfukf(t-1,i))^(g1-1)) * exp(-g2*(xparticlePred_pfukf(t,i)-xparticle_pfukf(t-1,i)));
    proposal = inv(sqrt(PparticlePred_pfukf(t,i))) * exp(-0.5*inv(PparticlePred_pfukf(t,i)) *((xparticlePred_pfukf(t,i)-mu_pfukf(t,i))^(2)));
    w(t,i) = lik*prior/proposal;      
  end;  
  w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.
  
  % SELECTION STEP:
  % ===============
  % Here, we give you the choice to try three different types of
  % resampling algorithms. Note that the code for these algorithms
  % applies to any problem!
  if resamplingScheme == 1
    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.
  elseif resamplingScheme == 2
    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.
  else  
    outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.  
  end;
  xparticle_pfukf(t,:) = xparticlePred_pfukf(t,outIndex); % Keep particles with
                                              % resampled indices.
  Pparticle_pfukf(t,:) = PparticlePred_pfukf(t,outIndex);  
  
end;   % End of t loop.
time_pfukf(j) = toc;



%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO WITH MCMC  %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%  ============= UKF proposal =============  %%%%%%%%%%%%%%%%

% INITIALISATION:
% ==============
xparticle_pfukfMC = ones(T,N);        % These are the particles for the estimate
                                      % of x. Note that there's no need to store
                                      % them for all t. We're only doing this to
                                      % show you all the nice plots at the end.
Pparticle_pfukfMC = P0*ones(T,N);     % Particles for the covariance of x.
xparticlePred_pfukfMC = ones(T,N);    % One-step-ahead predicted values of the states.
PparticlePred_pfukfMC = ones(T,N);    % One-step-ahead predicted values of P.
yPred_pfukfMC = ones(T,N);            % One-step-ahead predicted values of y.
w = ones(T,N);                        % Importance weights.
mu_pfukfMC = ones(T,1);               % EKF estimate of the mean of the states.

previousXukfMC = ones(T,N);           % Particles at the previous time step. 
previousXResukfMC = ones(T,N);        % Resampled previousX.
previousPukfMC = ones(T,N);           % Covariance particles at the previous time step. 
previousPResukfMC = ones(T,N);        % Resampled previousP.

error=0;
disp(' ');
tic;

for t=2:T,    
  fprintf('run = %i / %i :  PF-UKF-MCMC : t = %i / %i  \r',j,no_of_runs,t,T);
  fprintf('\n')
  
  % PREDICTION STEP:
  % ================ 
  % We use the UKF as proposal.
  for i=1:N,
    % Call Unscented Kalman Filter
    [mu_pfukfMC(t,i),PparticlePred_pfukfMC(t,i)]=ukf1(xparticle_pfukfMC(t-1,i),Pparticle_pfukfMC(t-1,i),[],Q_pfukf,'ukf_ffun',y(t),R_pfukf,'ukf_hfun',t,alpha,beta,kappa);
    xparticlePred_pfukfMC(t,i) = mu_pfukfMC(t,i) + sqrtm(PparticlePred_pfukfMC(t,i))*randn(1,1);
  end;
  
  previousXukfMC(t,:) = xparticle_pfukfMC(t-1,:);  % Store the particles at t-1. 
  previousPukfMC(t,:) = Pparticle_pfukfMC(t-1,:);  % Store the particles at t-1.    

  % EVALUATE IMPORTANCE WEIGHTS:
  % ============================
  % For our choice of proposal, the importance weights are give by:  
  for i=1:N,
    yPred_pfukfMC(t,i) = feval('hfun',xparticlePred_pfukfMC(t,i),t);        
    lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfukfMC(t,i))^(2)))+1e-99;
    prior = ((xparticlePred_pfukfMC(t,i)-xparticle_pfukfMC(t-1,i))^(g1-1)) * exp(-g2*(xparticlePred_pfukfMC(t,i)-xparticle_pfukfMC(t-1,i)));
    proposal = inv(sqrt(PparticlePred_pfukfMC(t,i))) * exp(-0.5*inv(PparticlePred_pfukfMC(t,i)) *((xparticlePred_pfukfMC(t,i)-mu_pfukfMC(t,i))^(2)));
    w(t,i) = lik*prior/proposal;      
  end;  
  w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.
  
  % SELECTION STEP:
  % ===============
  % Here, we give you the choice to try three different types of
  % resampling algorithms. Note that the code for these algorithms
  % applies to any problem!
  if resamplingScheme == 1
    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.
  elseif resamplingScheme == 2
    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.
  else  
    outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.  
  end;
  xparticle_pfukfMC(t,:) = xparticlePred_pfukfMC(t,outIndex); % Keep particles with resampled indices.
  Pparticle_pfukfMC(t,:) = PparticlePred_pfukfMC(t,outIndex); 
  
  previousXResukfMC(t,:) = previousXukfMC(t,outIndex);  % Resample particles at t-1.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
制服丝袜中文字幕一区| 欧美精品日韩综合在线| 成人av网站免费观看| 97精品超碰一区二区三区| 97国产一区二区| 56国语精品自产拍在线观看| 久久精品一区蜜桃臀影院| 中文字幕在线不卡一区二区三区| 亚洲成av人片一区二区梦乃| 国产精品影音先锋| 欧美三级日韩在线| 国产日产亚洲精品系列| 日本道在线观看一区二区| 日韩欧美电影在线| 亚洲国产日韩综合久久精品| 激情欧美日韩一区二区| 欧美视频在线一区| 中文字幕一区二区三区不卡在线 | **网站欧美大片在线观看| 日韩国产精品久久久久久亚洲| 国产成人精品www牛牛影视| 在线播放亚洲一区| 亚洲欧美二区三区| 99久久精品国产毛片| 国产视频一区二区在线| 久久91精品久久久久久秒播| 欧美色图一区二区三区| 亚洲男同性恋视频| 播五月开心婷婷综合| 国产视频911| 国产精品主播直播| 久久女同精品一区二区| 国产在线乱码一区二区三区| 日韩精品专区在线影院观看| 日韩avvvv在线播放| 日韩一区二区三区高清免费看看| 亚洲黄色小说网站| 在线中文字幕一区| 国模冰冰炮一区二区| 欧美国产日韩一二三区| 成人综合婷婷国产精品久久| 日本一区二区在线不卡| 国产成a人无v码亚洲福利| 国产精品欧美一级免费| 99久久国产综合色|国产精品| 成人免费视频在线观看| 欧美在线看片a免费观看| 亚洲国产欧美一区二区三区丁香婷| 欧美日韩视频第一区| 韩国成人福利片在线播放| 国产精品久久久久国产精品日日 | 国产亚洲婷婷免费| 色偷偷88欧美精品久久久| 日韩二区在线观看| 国产精品久99| 日韩一区二区三区电影在线观看| 国产美女精品人人做人人爽| 国产精品美女www爽爽爽| 欧美一区午夜视频在线观看| 丁香一区二区三区| 久久99国产精品麻豆| 午夜伊人狠狠久久| 1000部国产精品成人观看| 日韩免费看的电影| 制服丝袜在线91| 欧美系列一区二区| 91影院在线观看| 欧美性大战久久| 91麻豆产精品久久久久久| 国产成人综合网| 精品无码三级在线观看视频| 午夜欧美电影在线观看| 一区二区三区在线视频免费| 国产精品久久久久久久裸模| 精品久久久久久久久久久久久久久 | 欧美日韩三级视频| 91久久免费观看| 色综合网色综合| 播五月开心婷婷综合| 色综合久久中文综合久久97| 99久久久无码国产精品| av一区二区三区| 色婷婷亚洲综合| 91精品国产综合久久久久久漫画 | 亚洲三级小视频| 亚洲免费在线视频一区 二区| 亚洲少妇中出一区| 天涯成人国产亚洲精品一区av| 亚洲精品免费在线| 亚洲一区二区中文在线| 久久精品国产久精国产| 激情国产一区二区 | 久久婷婷国产综合国色天香| 国产精品人人做人人爽人人添| 欧美xxxxx牲另类人与| 久久精品一区二区三区不卡牛牛| 国产精品国产三级国产普通话99| 亚洲午夜电影网| 狠狠v欧美v日韩v亚洲ⅴ| 91黄视频在线| 欧美激情综合在线| 奇米精品一区二区三区在线观看| 懂色av一区二区夜夜嗨| 欧美人xxxx| 亚洲女女做受ⅹxx高潮| 韩国在线一区二区| 欧美色综合影院| 一区二区三区欧美久久| 国产成人超碰人人澡人人澡| 欧美美女喷水视频| 夜夜嗨av一区二区三区中文字幕| 国产一区三区三区| 日韩视频免费观看高清在线视频| 伊人色综合久久天天| 91福利在线播放| 亚洲国产精品成人久久综合一区| 麻豆极品一区二区三区| 制服.丝袜.亚洲.另类.中文| 一区二区三区小说| 欧美成人女星排行榜| 国内精品写真在线观看| 久久久99久久| 成人动漫在线一区| 国产精品美女久久福利网站| 国产一区二区三区黄视频 | 精品日韩99亚洲| 精品亚洲国产成人av制服丝袜| 日韩欧美国产一区二区三区| 免费人成网站在线观看欧美高清| 日韩精品中文字幕一区 | 久久久久国产一区二区三区四区| 九九久久精品视频| 国产午夜三级一区二区三| 成人福利视频在线| 亚洲综合色区另类av| 欧美日韩国产首页| 国产在线视频一区二区| 国产精品久久久久久亚洲伦| 欧美日韩在线免费视频| 男女男精品视频| 国产日韩欧美综合一区| 在线观看不卡视频| 久久99精品国产麻豆婷婷洗澡| 国产精品视频第一区| 欧美日韩的一区二区| 国产精品一区久久久久| 亚洲国产精品自拍| 国产午夜精品久久久久久久| 欧美午夜精品久久久久久孕妇| 老司机精品视频线观看86| 日韩理论片在线| 国产亚洲精久久久久久| 日韩欧美一区在线| 欧美在线视频你懂得| 狠狠色狠狠色综合系列| 亚洲在线观看免费视频| 日本一区二区动态图| 日韩精品一区二区三区在线观看| 日韩一区二区三区四区五区六区| 国产成人精品免费网站| 日本伊人精品一区二区三区观看方式| 国产精品久久午夜夜伦鲁鲁| 欧美一区二区女人| 91麻豆精品国产综合久久久久久| 91香蕉国产在线观看软件| 99视频精品全部免费在线| 国产盗摄女厕一区二区三区| 国产综合久久久久久久久久久久| 蜜臀av一区二区三区| 久久精品国产亚洲高清剧情介绍 | 亚洲色图色小说| 亚洲激情中文1区| 亚洲综合在线五月| 亚洲影院理伦片| 午夜视频一区二区| 国产在线精品一区二区三区不卡 | 久久久www成人免费毛片麻豆| 久久久美女毛片| 中文字幕一区二区三| 亚洲人成网站色在线观看| 日韩美女精品在线| 日本aⅴ免费视频一区二区三区| 蜜臀av性久久久久蜜臀aⅴ | 日韩欧美一区二区免费| 中文字幕日韩一区二区| 日韩精品一区第一页| 国产资源精品在线观看| 在线观看三级视频欧美| 精品国产乱码久久久久久久久| 日本一区二区免费在线| 午夜精品一区在线观看| 丁香啪啪综合成人亚洲小说 | 午夜精品视频一区| 成人福利视频在线| 91精品国产色综合久久ai换脸| 国产午夜精品在线观看| 日韩国产精品91| 在线观看亚洲a| 美女性感视频久久| 欧美日韩一级二级|