亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? index.html

?? svm(支持向量機)分類算法本質上是二類分類器
?? HTML
?? 第 1 頁 / 共 5 頁
字號:
<P><A href="mailto:svm-light@ls8.cs.uni-dortmund.de">Please send me email</A> and let me know that you got svm-light. I will put you on my mailing list to inform you about new versions and bug-fixes. SVM<I><SUP>light</I></SUP> comes with a quadratic programming tool for solving small intermediate quadratic programming problems. It is based on the method of Hildreth and D'Espo and solves small quadratic programs very efficiently. Nevertheless, if for some reason you want to use another solver, the new version still comes with an interface to PR_LOQO. The <a TARGET="_top" HREF="javascript:if(confirm('http://www.first.gmd.de/~smola/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.first.gmd.de/~smola/'" tppabs="http://www.first.gmd.de/~smola/">PR_LOQO optimizer</a> was written by <a TARGET="_top" HREF="javascript:if(confirm('http://www.first.gmd.de/~smola/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.first.gmd.de/~smola/'" tppabs="http://www.first.gmd.de/~smola/">A. Smola</a>. It can be requested from <a TARGET="_top" HREF="javascript:if(confirm('http://www.kernel-machines.org/code/prloqo.tar.gz  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.kernel-machines.org/code/prloqo.tar.gz'" tppabs="http://www.kernel-machines.org/code/prloqo.tar.gz">http://www.kernel-machines.org/code/prloqo.tar.gz</a>. </P><H2>Installation</H2><P>To install SVM<I><SUP>light</I></SUP> you need to download <TT>svm_light.tar.gz</TT>. Create a new directory:</P><DIR><TT><P>mkdir svm_light</P></TT></DIR><P>Move <TT>svm_light.tar.gz</TT> to this directory and unpack it with </P><DIR><TT><P>gunzip -c svm_light.tar.gz | tar xvf -</P></TT></DIR><P>Now execute </P><DIR><TT><P>make or make all</P></TT></DIR><P>which compiles the system and creates the two executables </P><DIR><TT>svm_learn (learning module)</TT><BR><TT>svm_classify (classification module)</TT></DIR><P>If you do not want to use the built-in optimizer but PR_LOQO instead, create a subdirectory in the svm_light directory with </P><DIR><TT><P>mkdir pr_loqo</P></TT></DIR><P>and copy the files <TT>pr_loqo.c</TT> and <TT>pr_loqo.h</TT> in there. Now execute </P><DIR><TT><P>make svm_learn_loqo</P></TT></DIR><P>If the system does not compile properly, check this <A href="svm_light_faq.html" tppabs="http://www.cs.cornell.edu/People/tj/svm%5Flight/svm_light_faq.html">FAQ</A>.</P><H2>How to use</H2><P>This section explains how to use the SVM<I><SUP>light</I></SUP> software. A good introduction to the theory of SVMs is Chris Burges' <a TARGET="_top" HREF="javascript:if(confirm('http://www.kernel-machines.org/papers/Burges98.ps.gz  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.kernel-machines.org/papers/Burges98.ps.gz'" tppabs="http://www.kernel-machines.org/papers/Burges98.ps.gz">tutorial</a>. </P><P>SVM<I><SUP>light</I></SUP> consists of a learning module (<TT>svm_learn</TT>) and a classification module (<TT>svm_classify</TT>). The classification module can be used to apply the learned model to new examples. See also the examples below for how to use <TT>svm_learn</TT> and <TT>svm_classify</TT>. </P><TT><P>svm_learn</TT> is called with the following parameters:</P><DIR><TT><P>svm_learn [options] example_file model_file</P></TT></DIR><P>Available options are: </P><DIR><PRE>General options:         -?          - this help         -v [0..3]   - verbosity level (default 1)Learning options:         -z {c,r,p}  - select between classification (c), regression (r), and                        preference ranking (p) (see [<A href="#References">Joachims, 2002c</A>])                       (default classification)                   -c float    - C: trade-off between training error                       and margin (default [avg. x*x]^-1)         -w [0..]    - epsilon width of tube for regression                       (default 0.1)         -j float    - Cost: cost-factor, by which training errors on                       positive examples outweight errors on negative                       examples (default 1) (see [<A href="#References">Morik et al., 1999</A>])         -b [0,1]    - use biased hyperplane (i.e. x*w+b0) instead                       of unbiased hyperplane (i.e. x*w0) (default 1)         -i [0,1]    - remove inconsistent training examples                       and retrain (default 0)Performance estimation options:         -x [0,1]    - compute leave-one-out estimates (default 0)                       (see [5])         -o ]0..2]   - value of rho for XiAlpha-estimator and for pruning                       leave-one-out computation (default 1.0)                        (see [<A href="#References">Joachims, 2002a</A>])         -k [0..100] - search depth for extended XiAlpha-estimator                       (default 0)Transduction options (see [<A href="#References">Joachims, 1999c</A>], [<A href="#References">Joachims, 2002a</A>]):         -p [0..1]   - fraction of unlabeled examples to be classified                       into the positive class (default is the ratio of                       positive and negative examples in the training data)Kernel options:         -t int      - type of kernel function:                        0: linear (default)                        1: polynomial (s a*b+c)^d                        2: radial basis function exp(-gamma ||a-b||^2)                        3: sigmoid tanh(s a*b + c)                        4: user defined kernel from kernel.h         -d int      - parameter d in polynomial kernel         -g float    - parameter gamma in rbf kernel         -s float    - parameter s in sigmoid/poly kernel         -r float    - parameter c in sigmoid/poly kernel         -u string   - parameter of user defined kernelOptimization options (see [<A href="#References">Joachims, 1999a</A>], [<A href="#References">Joachims, 2002a</A>]):         -q [2..]    - maximum size of QP-subproblems (default 10)         -n [2..q]   - number of new variables entering the working set                       in each iteration (default n = q). Set n&lt;q to prevent                       zig-zagging.         -m [5..]    - size of cache for kernel evaluations in MB (default 40)                       The larger the faster...         -e float    - eps: Allow that error for termination criterion                       [y [w*x+b] - 1] = eps (default 0.001)          -h [5..]    - number of iterations a variable needs to be                       optimal before considered for shrinking (default 100)          -f [0,1]    - do final optimality check for variables removed by                       shrinking. Although this test is usually positive, there                       is no guarantee that the optimum was found if the test is                       omitted. (default 1)          -y string   -> if option is given, reads alphas from file with given                        and uses them as starting point. (default 'disabled')         -# int      -> terminate optimization, if no progress after this                        number of iterations. (default 100000)Output options:          -l char     - file to write predicted labels of unlabeled examples                        into after transductive learning          -a char     - write all alphas to this file after learning (in the 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品欧美激情| 一本久久a久久免费精品不卡| 国产盗摄一区二区| 欧美日韩亚洲综合一区二区三区| 久久新电视剧免费观看| 五月开心婷婷久久| 97久久超碰国产精品| 亚洲精品一区二区三区四区高清| 亚洲男人的天堂网| 岛国一区二区在线观看| 日韩精品最新网址| 日韩精品福利网| 91电影在线观看| 国产精品高潮呻吟久久| 国产一区视频网站| 91麻豆精品国产91久久久更新时间| 国产精品久久久久精k8 | 国产91精品免费| 91精品国产欧美一区二区| 亚洲午夜久久久久久久久电影院 | 26uuu国产日韩综合| 亚洲国产wwwccc36天堂| 91原创在线视频| 中文字幕在线不卡视频| 成人一区在线观看| 国产亚洲欧美色| 国产激情视频一区二区在线观看| 欧美一区二区三区精品| 日韩专区欧美专区| 日韩一级完整毛片| 精品一区二区三区香蕉蜜桃| 91精品国产福利| 日本亚洲免费观看| 日韩一级片在线观看| 免费成人性网站| 精品美女被调教视频大全网站| 日本欧美在线看| 欧美va天堂va视频va在线| 极品美女销魂一区二区三区| 欧美电影免费观看高清完整版 | 一本在线高清不卡dvd| 国产精品家庭影院| 色菇凉天天综合网| 亚洲五码中文字幕| 91精品国产综合久久小美女| 麻豆久久久久久| 久久久www成人免费毛片麻豆| 国产精品69毛片高清亚洲| 国产精品色婷婷| 91久久国产最好的精华液| 伊人性伊人情综合网| 678五月天丁香亚洲综合网| 美女视频第一区二区三区免费观看网站| 欧美一区中文字幕| 国产精品白丝jk白祙喷水网站| 欧美—级在线免费片| 日本黄色一区二区| 久国产精品韩国三级视频| 欧美激情一区三区| 欧美撒尿777hd撒尿| 韩日精品视频一区| 亚洲欧美欧美一区二区三区| 欧美在线|欧美| 久久99精品久久久久久久久久久久 | 久久这里只精品最新地址| 成人av影视在线观看| 婷婷开心激情综合| 久久精品免视看| 色婷婷av一区二区三区gif| 欧美a级一区二区| 国产精品第一页第二页第三页| 欧美在线小视频| 国产黄色精品视频| 亚洲二区在线视频| 日本一区二区视频在线| 在线一区二区三区四区五区| 免播放器亚洲一区| 亚洲精品中文字幕乱码三区| 欧美r级电影在线观看| 色噜噜狠狠色综合中国| 国产尤物一区二区在线 | 18成人在线视频| 欧美一区二区视频观看视频| av成人免费在线观看| 蜜臀av性久久久久蜜臀av麻豆| 国产精品福利影院| 日韩欧美一级片| 欧美日韩一区高清| 91在线一区二区三区| 老司机免费视频一区二区 | 国产精品久久久久久久裸模| 日韩欧美专区在线| 欧美午夜免费电影| 91视频在线观看免费| 国产成人丝袜美腿| 久久99蜜桃精品| 天堂影院一区二区| 亚洲国产中文字幕| 亚洲欧美电影院| 亚洲欧洲美洲综合色网| 国产亚洲综合av| 久久免费视频一区| 久久综合九色综合欧美就去吻| 欧美精品在线一区二区| 色94色欧美sute亚洲线路一ni | 国产自产v一区二区三区c| 视频在线观看一区二区三区| 亚洲午夜久久久久久久久久久| 亚洲免费av在线| 国产精品久久久久久福利一牛影视| 久久综合一区二区| 欧美草草影院在线视频| 日韩一级片网址| 日韩精品综合一本久道在线视频| 91精品国产入口| 日韩一区二区影院| 精品99一区二区| 精品国产麻豆免费人成网站| 日韩免费观看高清完整版在线观看| 91精品国产91热久久久做人人| 91精品国产91久久久久久最新毛片| 欧美三区在线观看| 欧美一区二区视频免费观看| 日韩欧美中文字幕一区| 久久综合99re88久久爱| 国产亚洲精品免费| 国产精品免费视频一区| 亚洲精选一二三| 午夜免费欧美电影| 美美哒免费高清在线观看视频一区二区| 日韩精品欧美精品| 国产在线播放一区| 成人av午夜电影| 欧美影院一区二区三区| 欧美日韩国产精品自在自线| 欧美哺乳videos| 中文字幕中文字幕一区二区 | 欧美日本视频在线| 精品国产一区二区亚洲人成毛片| 337p粉嫩大胆色噜噜噜噜亚洲| 中文字幕国产一区| 亚洲综合色成人| 麻豆免费精品视频| 97久久精品人人做人人爽50路| 欧美色综合影院| 精品伦理精品一区| 亚洲天堂网中文字| 久久精品国产精品亚洲精品| 国产精品99久| 欧美日韩在线播放一区| 欧美成人性福生活免费看| 亚洲欧美自拍偷拍色图| 青青草国产成人av片免费| 成人黄色软件下载| 欧美日韩亚洲另类| 中国色在线观看另类| 亚洲成av人片在线观看| 成人美女在线视频| 91麻豆精品国产无毒不卡在线观看| 国产亚洲一区字幕| 丝袜亚洲另类欧美| 北条麻妃一区二区三区| 日韩精品一区二区三区在线观看| 亚洲欧洲三级电影| 激情综合色播激情啊| 欧美在线不卡视频| 国产精品女主播av| 男女男精品网站| 91欧美一区二区| 久久久久久麻豆| 蜜臀av性久久久久蜜臀aⅴ流畅| 99久久精品免费观看| 亚洲精品在线网站| 日日摸夜夜添夜夜添精品视频| 97国产精品videossex| 久久精品人人爽人人爽| 麻豆一区二区三| 欧美日韩国产综合一区二区| 中文字幕一区二| 国产精品系列在线观看| 欧美tickle裸体挠脚心vk| 午夜久久久久久久久久一区二区| www.性欧美| 中文一区二区完整视频在线观看| 久久99精品国产| 日韩欧美国产电影| 美美哒免费高清在线观看视频一区二区| 在线观看国产日韩| 一区在线观看视频| 99这里只有久久精品视频| 久久先锋影音av鲁色资源| 美女视频黄频大全不卡视频在线播放| 欧美自拍丝袜亚洲| 亚洲区小说区图片区qvod| www.欧美色图| 天天av天天翘天天综合网| 91国在线观看| 亚洲午夜精品久久久久久久久| 欧美主播一区二区三区美女| 亚洲精品成人悠悠色影视|