亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? index.html

?? svm(支持向量機)分類算法本質上是二類分類器
?? HTML
?? 第 1 頁 / 共 5 頁
字號:
                       same order as in the training set)</PRE></DIR><P>A more detailed description of the parameters and how they link to the respective algorithms is given in the appendix of [<A href="#References">Joachims, 2002a</A>]. </P><P>The input file <TT>example_file</TT> contains the training examples. The first lines may contain comments and are ignored if they start with #. Each of the following lines represents one training example and is of the following format: </P><DIR><TT>&lt;line&gt; .=. &lt;target&gt; &lt;feature&gt;:&lt;value&gt; &lt;feature&gt;:&lt;value&gt; ... &lt;feature&gt;:&lt;value&gt; # &lt;info&gt;</TT><BR><TT>&lt;target&gt; .=. +1 | -1 | 0 | &lt;float&gt;</TT>&nbsp;</TT><BR><TT>&lt;feature&gt; .=. &lt;integer&gt; | "qid"</TT><BR><TT>&lt;value&gt; .=. &lt;float&gt;</TT><BR><TT>&lt;info&gt; .=. &lt;string&gt;</TT></DIR><P>The target value and each of the feature/value pairs are separated by a space character. Feature/value pairs MUST be ordered by increasing feature number. Features with value zero can be skipped. The string <TT>&lt;info&gt;</TT> can be used to pass additional information to the kernel (e.g. non feature vector data).</P><P>In classification mode, the target value denotes the class of the example. +1 as the target value marks a positive example, -1 a negative example respectively. So, for example, the line </P><blockquote>  <P><tt>-1 1:0.43 3:0.12 9284:0.2 # abcdef</tt> </P></blockquote><P>specifies a negative example for which feature number 1 has the value 0.43, feature number 3 has the value 0.12, feature number 9284 has the value 0.2, and all the other features have value 0. In addition, the string <tt>abcdef</tt> is stored with the vector, which can serve as a way of providing additional information for user defined kernels. A class label of 0 indicates that this example should be classified using transduction. The predictions for the examples classified by transduction are written to the file specified through the -l option. The order of the predictions is the same as in the training data. </P><P>In regression mode, the &lt;target&gt; contains the real-valued target value.</P><P>In ranking mode [<A href="#References">Joachims, 2002c</A>], the target value is used to generated pairwise preference constraints (see <a href="javascript:if(confirm('http://striver.joachims.org/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://striver.joachims.org/'" tppabs="http://striver.joachims.org/">STRIVER</a>). A preference constraint is included for all pairs of examples in the <TT>example_file</TT>, for which the target value differs. The special feature "qid" can be used to restrict the generation of constraints. Two examples are considered for a pairwise preference constraint only, if the value of "qid" is the same. For example, given the <TT>example_file</TT></P><BLOCKQUOTE dir=ltr style="MARGIN-RIGHT: 0px">  <P><TT>3&nbsp;qid:1 1:0.53 2:0.12<BR>  2&nbsp;qid:1 1:0.13 2:0.1<BR>  7 qid:2 1:0.87 2:0.12 </TT></P></BLOCKQUOTE><P>a preference constraint is included only for the first and the second example(ie. the first should be ranked higher than the second), but not with the third example, since it has a different "qid".</P><P>In all modes, the result of <TT>svm_learn</TT> is the model which is learned from the training data in <TT>example_file</TT>. The model is written to <TT>model_file</TT>. To make predictions on test examples, <TT>svm_classify</TT> reads this file. <TT>svm_classify</TT> is called with the following parameters: </P><DIR><TT><P>svm_classify [options] example_file model_file output_file</P></TT></DIR><P>Available options are: </P><blockquote><PRE>-h         Help. -v [0..3]  Verbosity level (default 2).-f [0,1]   0: old output format of V1.0           1: output the value of decision function (default)</PRE></blockquote><P>The test examples in <TT>example_file</TT> are given in the same format as the training examples (possibly with 0 as class label). For all test examples in <TT>example_file</TT> the predicted values are written to <TT>output_file</TT>. There is one line per test example in <TT>output_file</TT> containing the value of the decision function on that example. For classification, the sign of this value determines the predicted class. For regression, it is the predicted value itself, and for ranking the value can be used to order the test examples. The test example file has the same format as the one for <TT>svm_learn</TT>. Again, <TT>&lt;class&gt;</TT> can have the value zero indicating unknown. </P><P>If you want to find out more, try this <A href="svm_light_faq.html" tppabs="http://www.cs.cornell.edu/People/tj/svm%5Flight/svm_light_faq.html">FAQ</A>. </P><H2>Getting started: some Example Problems</H2><H3>Inductive SVM</H3><P>You will find an example text classification problem at </P><DIR><P><a href="javascript:if(confirm('http://download.joachims.org/svm_light/examples/example1.tar.gz  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://download.joachims.org/svm_light/examples/example1.tar.gz'" tppabs="http://download.joachims.org/svm_light/examples/example1.tar.gz" target="_top">http://download.joachims.org/svm_light/examples/example1.tar.gz</a></P></DIR><P>Download this file into your svm_light directory and unpack it with </P><DIR><TT><P>gunzip -c example1.tar.gz | tar xvf -</P></TT></DIR><P>This will create a subdirectory <TT>example1</TT>. Documents are represented as feature vectors. Each feature corresponds to a word stem (9947 features). The task is to learn which <a TARGET="_top" HREF="javascript:if(confirm('http://www.daviddlewis.com/resources/testcollections/reuters21578/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://www.daviddlewis.com/resources/testcollections/reuters21578/'" tppabs="http://www.daviddlewis.com/resources/testcollections/reuters21578/">Reuters articles</a> are about "corporate acquisitions". There are 1000 positive and 1000 negative examples in the file <TT>train.dat</TT>. The file <TT>test.dat</TT> contains 600 test examples. The feature numbers correspond to the line numbers in the file <TT>words</TT>. To run the example, execute the commands: </P><DIR><TT><P>svm_learn example1/train.dat example1/model<BR></TT><TT>svm_classify example1/test.dat example1/model example1/predictions</P></TT></DIR><P>The accuracy on the test set is printed to stdout. </P><H3>Transductive SVM</H3><P>To try out the transductive learner, you can use the following dataset (see also <a href="javascript:if(confirm('http://sgt.joachims.org/  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://sgt.joachims.org/'" tppabs="http://sgt.joachims.org/">Spectral Graph Transducer</a>). I compiled it from the same Reuters articles as used in the example for the inductive SVM. The dataset consists of only 10 training examples (5 positive and 5 negative) and the same 600 test examples as above. You find it at </P><DIR><P><a href="javascript:if(confirm('http://download.joachims.org/svm_light/examples/example2.tar.gz  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://download.joachims.org/svm_light/examples/example2.tar.gz'" tppabs="http://download.joachims.org/svm_light/examples/example2.tar.gz" target="_top">http://download.joachims.org/svm_light/examples/example2.tar.gz</a></P></DIR><P>Download this file into your svm_light directory and unpack it with </P><DIR><TT><P>gunzip -c example2.tar.gz | tar xvf -</P></TT></DIR><P>This will create a subdirectory <TT>example2</TT>. To run the example, execute the commands: </P><DIR><P><TT>svm_learn example2/train_transduction.dat example2/model</TT> <BR><TT>svm_classify example2/test.dat example2/model example2/predictions</TT></P></DIR><P>The classification module is called only to get the accuracy printed. The transductive learner is invoced automatically, since <TT>train_transduction.dat </TT>contains unlabeled examples (i. e. the 600 test examples). You can compare the results to those of the inductive SVM by running: </P><BLOCKQUOTE><TT>svm_learn example2/train_induction.dat example2/model</TT> <BR><TT>svm_classify example2/test.dat example2/model example2/predictions</TT></BLOCKQUOTE><P>The file <TT>train_induction.dat</TT> contains the same 10 (labeled) training examples as <TT>train_transduction.dat</TT>. </P><H3> Ranking SVM</H3><P>For the ranking SVM [<A href="#References">Joachims, 2002c</A>], I created a toy example. It consists of only 12 training examples in 3 groups and 4 test examples. You find it at </P><DIR><P><a href="javascript:if(confirm('http://download.joachims.org/svm_light/examples/example3.tar.gz  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://download.joachims.org/svm_light/examples/example3.tar.gz'" tppabs="http://download.joachims.org/svm_light/examples/example3.tar.gz" target="_top">http://download.joachims.org/svm_light/examples/example3.tar.gz</a></P></DIR><P>Download this file into your svm_light directory and unpack it with </P><DIR><TT><P>gunzip -c example3.tar.gz | tar xvf -</P></TT></DIR><P>This will create a subdirectory <TT>example3</TT>. To run the example, execute the commands: </P><DIR><P><TT>svm_learn -z p example3/train.dat example3/model</TT> <BR><TT>svm_classify example3/test.dat example3/model example3/predictions</TT></P></DIR><P>The output in the predictions file can be used to rank the test examples. If you do so, you will see that it predicts the correct ranking. The values in the predictions file do not have a meaning in an absolute sense. They are only used for ordering. </P><P>It can also be interesting to&nbsp;look at the "training error" of the ranking SVM. The equivalent of training error for a ranking SVM is the number of training pairs that are misordered by the learned model. To find those pairs, one can apply the model to the training file: </P>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产真实乱偷精品视频免| 日韩欧美成人激情| 国产精品欧美极品| 国产盗摄一区二区| 久久精品一级爱片| 国产成人av电影在线观看| 久久精品在这里| www.欧美精品一二区| 亚洲欧美日韩国产中文在线| 色综合咪咪久久| 亚洲国产婷婷综合在线精品| 欧美一级一级性生活免费录像| 精品在线观看免费| 欧美国产一区在线| 欧美丝袜丝nylons| 久久99国产精品成人| 亚洲色图欧洲色图婷婷| 欧美日本视频在线| 国产激情一区二区三区| 亚洲精品视频观看| 欧美xxxx老人做受| 懂色av一区二区三区蜜臀| 中文字幕一区视频| 51久久夜色精品国产麻豆| 成人免费不卡视频| 图片区日韩欧美亚洲| 国产精品国产精品国产专区不片| 欧美视频完全免费看| 国产精品自产自拍| 亚洲成av人片一区二区| 久久只精品国产| 欧美日精品一区视频| 国产成人鲁色资源国产91色综| 伊人色综合久久天天人手人婷| 欧美日韩国产大片| 成人午夜短视频| 日韩电影在线看| 一区二区日韩电影| 国产精品美女久久久久久久| 日韩欧美国产综合| 欧美无砖砖区免费| 色av一区二区| 国产91露脸合集magnet| 欧美aaa在线| 日韩电影免费在线观看网站| 亚洲在线视频一区| 一区二区理论电影在线观看| 国产午夜一区二区三区| 欧美精品一区二| 91麻豆精品国产91久久久| 色系网站成人免费| 99久久综合色| 成人激情黄色小说| 国产成人精品一区二区三区四区 | 天天爽夜夜爽夜夜爽精品视频| 精品对白一区国产伦| 欧美一区二区免费观在线| 欧美日韩免费观看一区二区三区| 99re热这里只有精品免费视频| 国产伦精品一区二区三区免费迷| 久久99这里只有精品| 午夜电影一区二区| 亚洲电影一区二区| 亚洲观看高清完整版在线观看| 亚洲图片激情小说| 一区视频在线播放| 亚洲三级免费观看| 一区二区三区av电影| 亚洲精品久久嫩草网站秘色| 亚洲精品ww久久久久久p站| 亚洲精品国产无天堂网2021| 亚洲免费在线看| 亚洲一区二区欧美| 日韩中文字幕亚洲一区二区va在线| 图片区小说区国产精品视频| 日本亚洲视频在线| 九色综合狠狠综合久久| 国产在线精品一区二区| 成人美女在线观看| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 成人动漫一区二区三区| jiyouzz国产精品久久| 色偷偷成人一区二区三区91| 欧美系列日韩一区| 欧美大尺度电影在线| 国产人成亚洲第一网站在线播放 | 成人综合日日夜夜| 91小视频在线观看| 欧美日韩一区二区在线观看| 欧美一区二区在线观看| 欧美高清一级片在线观看| 亚洲欧美区自拍先锋| 亚洲aⅴ怡春院| 国产激情偷乱视频一区二区三区| 99精品视频在线观看免费| 欧美天天综合网| 久久久不卡影院| 一区二区欧美国产| 狠狠色狠狠色综合系列| 99久久免费视频.com| 4438x亚洲最大成人网| 中文字幕国产一区| 五月激情综合网| 成人app在线| 欧美一级国产精品| 最近中文字幕一区二区三区| 免费成人性网站| 不卡免费追剧大全电视剧网站| 欧美精品99久久久**| 中文字幕第一区第二区| 天天色综合天天| 91色porny| 国产亚洲欧美激情| 日本欧美肥老太交大片| av成人老司机| 久久久噜噜噜久久人人看| 偷窥少妇高潮呻吟av久久免费| 国产成人日日夜夜| 日韩欧美一二三区| 亚洲丶国产丶欧美一区二区三区| 成人黄色综合网站| 精品国产乱码久久| 日韩高清在线一区| 欧美丰满少妇xxxbbb| 亚洲女人****多毛耸耸8| 国产综合色视频| 欧美一区二区三级| 五月天一区二区三区| 一本大道综合伊人精品热热| 精品sm捆绑视频| 免费一区二区视频| 日韩色在线观看| 美腿丝袜亚洲一区| 在线播放中文一区| 五月开心婷婷久久| 777a∨成人精品桃花网| 婷婷久久综合九色国产成人| 欧美中文字幕不卡| 亚洲美女视频一区| 在线中文字幕不卡| 亚洲午夜久久久久久久久久久| 色婷婷亚洲精品| 亚洲一区二区三区四区在线观看 | 精品久久久影院| 久久成人久久爱| 26uuu精品一区二区三区四区在线| 免费成人美女在线观看| 欧美一级在线观看| 精品亚洲成av人在线观看| 日韩欧美一区二区久久婷婷| 美国十次综合导航| 国产亚洲欧美日韩在线一区| 成人精品小蝌蚪| 亚洲黄色尤物视频| 制服.丝袜.亚洲.中文.综合| 日本三级亚洲精品| 国产婷婷一区二区| 92国产精品观看| 亚洲一区二区精品视频| 日韩欧美在线网站| 国产成人免费视频精品含羞草妖精| 国产精品女上位| 欧美三级韩国三级日本一级| 日本不卡1234视频| 久久嫩草精品久久久精品一| 成人看片黄a免费看在线| 亚洲精品国久久99热| 日韩一区二区三区精品视频| 国产黄色精品视频| 亚洲资源中文字幕| 精品久久久久久久久久久久久久久久久| 国产在线观看一区二区| 综合久久一区二区三区| 欧美日韩黄视频| 国产乱码精品1区2区3区| 综合色中文字幕| 欧美一级高清大全免费观看| eeuss国产一区二区三区| 亚洲一区二区三区四区的| www国产成人免费观看视频 深夜成人网| a级精品国产片在线观看| 亚洲成人综合在线| 中文字幕va一区二区三区| 欧美丰满少妇xxxxx高潮对白| 成人av综合一区| 精彩视频一区二区| 亚洲香肠在线观看| 欧美激情一区二区三区不卡 | 欧美一区二区三区影视| 国产91精品露脸国语对白| 天涯成人国产亚洲精品一区av| 国产日韩高清在线| 欧美一区二区性放荡片| 色呦呦国产精品| 粉嫩在线一区二区三区视频| 免费看欧美美女黄的网站| 一区二区三区在线视频观看58| 久久综合色一综合色88| 欧美福利视频一区| 欧美偷拍一区二区|