亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? svm_struct_api.c

?? svm(支持向量機(jī))分類(lèi)算法本質(zhì)上是二類(lèi)分類(lèi)器
?? C
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
  }
  return(fvec);
}

double      loss(LABEL y, LABEL ybar, STRUCT_LEARN_PARM *sparm)
{
  /* loss for correct label y and predicted label ybar. The loss for
     y==ybar has to be zero. sparm->loss_function is set with the -l option. */
  if(sparm->loss_function == 0) { /* type 0 loss: 0/1 loss */
    if(y.class == ybar.class)     /* return 0, if y==ybar. return 1 else */
      return(0);
    else
      return(1);
  }
  else {
    /* Put your code for different loss functions here. But then
       find_most_violated_constraint_???(x, y, sm) has to return the
       highest scoring label with the largest loss. */
    printf("Unkown loss function\n");
    exit(1);
  }
}

void        print_struct_learning_stats(SAMPLE sample, STRUCTMODEL *sm,
					CONSTSET cset, double *alpha, 
					STRUCT_LEARN_PARM *sparm)
{
  /* This function is called after training and allows final touches to
     the model sm. But primarly it allows computing and printing any
     kind of statistic (e.g. training error) you might want. */
}

void        write_struct_model(char *file, STRUCTMODEL *sm, 
			       STRUCT_LEARN_PARM *sparm)
{
  /* Writes structural model sm to file file. */
  FILE *modelfl;
  long j,i,sv_num;
  MODEL *model=sm->svm_model;
  SVECTOR *v;

  if ((modelfl = fopen (file, "w")) == NULL)
  { perror (file); exit (1); }
  fprintf(modelfl,"SVM-multiclass Version %s\n",INST_VERSION);
  fprintf(modelfl,"%d # number of classes\n",
	  sparm->num_classes);
  fprintf(modelfl,"%d # number of base features\n",
	  sparm->num_features);
  fprintf(modelfl,"%d # loss function\n",
	  sparm->loss_function);
  fprintf(modelfl,"%ld # kernel type\n",
	  model->kernel_parm.kernel_type);
  fprintf(modelfl,"%ld # kernel parameter -d \n",
	  model->kernel_parm.poly_degree);
  fprintf(modelfl,"%.8g # kernel parameter -g \n",
	  model->kernel_parm.rbf_gamma);
  fprintf(modelfl,"%.8g # kernel parameter -s \n",
	  model->kernel_parm.coef_lin);
  fprintf(modelfl,"%.8g # kernel parameter -r \n",
	  model->kernel_parm.coef_const);
  fprintf(modelfl,"%s# kernel parameter -u \n",model->kernel_parm.custom);
  fprintf(modelfl,"%ld # highest feature index \n",model->totwords);
  fprintf(modelfl,"%ld # number of training documents \n",model->totdoc);
 
  sv_num=1;
  for(i=1;i<model->sv_num;i++) {
   for(v=model->supvec[i]->fvec;v;v=v->next) 
      sv_num++;
  }
  fprintf(modelfl,"%ld # number of support vectors plus 1 \n",sv_num);
  fprintf(modelfl,"%.8g # threshold b, each following line is a SV (starting with alpha*y)\n",model->b);

  for(i=1;i<model->sv_num;i++) {
    for(v=model->supvec[i]->fvec;v;v=v->next) {
      fprintf(modelfl,"%.32g ",model->alpha[i]*v->factor);
      for (j=0; (v->words[j]).wnum; j++) {
	fprintf(modelfl,"%ld:%.8g ",
		(long)(v->words[j]).wnum,
		(double)(v->words[j]).weight);
      }
      fprintf(modelfl,"#%s\n",v->userdefined);
    /* NOTE: this could be made more efficient by summing the
       alpha's of identical vectors before writing them to the
       file. */
    }
  }
  fclose(modelfl);
}

void        print_struct_testing_stats(SAMPLE sample, STRUCTMODEL *sm,
				       STRUCT_LEARN_PARM *sparm, 
				       STRUCT_TEST_STATS *teststats)
{
  /* This function is called after making all test predictions in
     svm_struct_classify and allows computing and printing any kind of
     evaluation (e.g. precision/recall) you might want. You can use
     the function eval_prediction to accumulate the necessary
     statistics for each prediction. */
}

void        eval_prediction(long exnum, EXAMPLE ex, LABEL ypred, 
			    STRUCTMODEL *sm, STRUCT_LEARN_PARM *sparm, 
			    STRUCT_TEST_STATS *teststats)
{
  /* This function allows you to accumlate statistic for how well the
     predicition matches the labeled example. It is called from
     svm_struct_classify. See also the function
     print_struct_testing_stats. */
  if(exnum == 0) { /* this is the first time the function is
		      called. So initialize the teststats */
  }
}

STRUCTMODEL read_struct_model(char *file, STRUCT_LEARN_PARM *sparm)
{
  /* Reads structural model sm from file file. This function is used
     only in the prediction module, not in the learning module. */
  FILE *modelfl;
  STRUCTMODEL sm;
  long i,queryid,slackid;
  double costfactor;
  long max_sv,max_words,ll,wpos;
  char *line,*comment;
  WORD *words;
  char version_buffer[100];
  MODEL *model;

  nol_ll(file,&max_sv,&max_words,&ll); /* scan size of model file */
  max_words+=2;
  ll+=2;

  words = (WORD *)my_malloc(sizeof(WORD)*(max_words+10));
  line = (char *)my_malloc(sizeof(char)*ll);
  model = (MODEL *)my_malloc(sizeof(MODEL));

  if ((modelfl = fopen (file, "r")) == NULL)
  { perror (file); exit (1); }

  fscanf(modelfl,"SVM-multiclass Version %s\n",version_buffer);
  if(strcmp(version_buffer,INST_VERSION)) {
    perror ("Version of model-file does not match version of svm_struct_classify!"); 
    exit (1); 
  }
  fscanf(modelfl,"%d%*[^\n]\n", &sparm->num_classes);  
  fscanf(modelfl,"%d%*[^\n]\n", &sparm->num_features);  
  fscanf(modelfl,"%d%*[^\n]\n", &sparm->loss_function);  
  fscanf(modelfl,"%ld%*[^\n]\n", &model->kernel_parm.kernel_type);  
  fscanf(modelfl,"%ld%*[^\n]\n", &model->kernel_parm.poly_degree);
  fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.rbf_gamma);
  fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.coef_lin);
  fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.coef_const);
  fscanf(modelfl,"%[^#]%*[^\n]\n", model->kernel_parm.custom);

  fscanf(modelfl,"%ld%*[^\n]\n", &model->totwords);
  fscanf(modelfl,"%ld%*[^\n]\n", &model->totdoc);
  fscanf(modelfl,"%ld%*[^\n]\n", &model->sv_num);
  fscanf(modelfl,"%lf%*[^\n]\n", &model->b);

  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*model->sv_num);
  model->alpha = (double *)my_malloc(sizeof(double)*model->sv_num);
  model->index=NULL;
  model->lin_weights=NULL;

  for(i=1;i<model->sv_num;i++) {
    fgets(line,(int)ll,modelfl);
    if(!parse_document(line,words,&(model->alpha[i]),&queryid,&slackid,
		       &costfactor,&wpos,max_words,&comment)) {
      printf("\nParsing error while reading model file in SV %ld!\n%s",
	     i,line);
      exit(1);
    }
    model->supvec[i] = create_example(-1,0,0,0.0,
				      create_svector(words,comment,1.0));
  }
  fclose(modelfl);
  free(line);
  free(words);
  if(verbosity>=1) {
    fprintf(stdout, " (%d support vectors read) ",(int)(model->sv_num-1));
  }
  sm.svm_model=model;
  sm.sizePsi=model->totwords;
  sm.w=NULL;
  return(sm);
}

void        write_label(FILE *fp, LABEL y)
{
  /* Writes label y to file handle fp. */
  fprintf(fp,"%d\n",y.class);
} 

void        free_pattern(PATTERN x) {
  /* Frees the memory of x. */
  free_example(x.doc,1);
}

void        free_label(LABEL y) {
  /* Frees the memory of y. */
}

void        free_struct_model(STRUCTMODEL sm) 
{
  /* Frees the memory of model. */
  /* if(sm.w) free(sm.w); */ /* this is free'd in free_model */
  if(sm.svm_model) free_model(sm.svm_model,1);
  /* add free calls for user defined data here */
}

void        free_struct_sample(SAMPLE s)
{
  /* Frees the memory of sample s. */
  int i;
  for(i=0;i<s.n;i++) { 
    free_pattern(s.examples[i].x);
    free_label(s.examples[i].y);
  }
  free(s.examples);
}

void        print_struct_help()
{
  /* Prints a help text that is appended to the common help text of
     svm_struct_learn. */

  printf("          none\n\n");
  printf("Based on multi-class SVM described in:\n");
  printf("          K. Crammer and Y. Singer. On the Algorithmic Implementation of\n");
  printf("          Multi-class SVMs, JMLR, 2001.\n");
}

void         parse_struct_parameters(STRUCT_LEARN_PARM *sparm)
{
  /* Parses the command line parameters that start with -- */
  int i;

  for(i=0;(i<sparm->custom_argc) && ((sparm->custom_argv[i])[0] == '-');i++) {
    switch ((sparm->custom_argv[i])[2]) 
      { 
      case 'a': i++; /* strcpy(learn_parm->alphafile,argv[i]); */ break;
      case 'e': i++; /* sparm->epsilon=atof(sparm->custom_argv[i]); */ break;
      case 'k': i++; /* sparm->newconstretrain=atol(sparm->custom_argv[i]); */ break;
      }
  }
}

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久综合九色综合欧美98| 久久久久综合网| 国产成人av一区二区三区在线| 一区免费观看视频| 欧美电视剧在线看免费| 色综合久久久网| 国产精品18久久久| 日本亚洲最大的色成网站www| 国产精品福利一区| 337p粉嫩大胆色噜噜噜噜亚洲| 欧美色综合天天久久综合精品| 懂色av噜噜一区二区三区av| 美女网站一区二区| 午夜不卡av在线| 亚洲黄一区二区三区| 久久免费午夜影院| 日韩欧美一级在线播放| 欧美日韩久久一区| 91福利小视频| 色婷婷久久久久swag精品| 成人爱爱电影网址| 国产99精品国产| 国产精品一级在线| 国内久久精品视频| 捆绑调教美女网站视频一区| 日日骚欧美日韩| 亚洲自拍偷拍图区| 亚洲欧美另类综合偷拍| 欧美激情一区二区三区不卡| 久久亚区不卡日本| 久久蜜桃av一区二区天堂| 精品久久久久一区| 久久这里都是精品| 久久毛片高清国产| 国产亚洲精品7777| 中文字幕的久久| 久久久国产一区二区三区四区小说| 欧美tickling挠脚心丨vk| 91精品福利在线一区二区三区| 欧美少妇bbb| 91麻豆精品91久久久久久清纯| 欧美精品亚洲二区| 欧美一区二区视频免费观看| 91精品国产综合久久蜜臀| 欧美一二三四在线| 久久久精品黄色| 国产精品免费丝袜| 亚洲精品ww久久久久久p站| 玉米视频成人免费看| 亚洲成人免费观看| 日韩精品成人一区二区在线| 欧美aaa在线| 国产激情一区二区三区四区 | 精品久久国产老人久久综合| 3atv在线一区二区三区| 日韩亚洲欧美综合| 国产日韩欧美精品一区| 亚洲欧美一区二区三区极速播放 | 日韩一区二区精品葵司在线| 日韩一级二级三级精品视频| 精品久久久影院| 国产精品久久午夜| 亚洲综合男人的天堂| 免费高清视频精品| 成人久久视频在线观看| 色偷偷久久一区二区三区| 在线不卡一区二区| 久久嫩草精品久久久精品一| 国产精品久久久久久户外露出| 一区二区三区丝袜| 日本午夜精品一区二区三区电影 | 亚洲老妇xxxxxx| 丝袜美腿亚洲综合| 国产一区二三区好的| 97se亚洲国产综合自在线观| 91精品国产色综合久久| 国产人久久人人人人爽| 亚洲国产aⅴ成人精品无吗| 极品少妇xxxx精品少妇偷拍| 一本一道久久a久久精品| 日韩欧美一区中文| 亚洲欧美日韩久久| 久久成人av少妇免费| 91美女福利视频| 亚洲精品一线二线三线无人区| 中文字幕在线视频一区| 亚洲一二三区不卡| 国产成人av网站| 欧美一卡二卡在线观看| 成人欧美一区二区三区视频网页 | 欧美一区二区观看视频| 国产精品久久久99| 久久成人久久爱| 欧美日韩和欧美的一区二区| 国产精品电影一区二区| 三级影片在线观看欧美日韩一区二区| 丁香六月久久综合狠狠色| 欧美乱妇一区二区三区不卡视频| 亚洲国产精品传媒在线观看| 丝袜国产日韩另类美女| 91香蕉国产在线观看软件| 久久久久综合网| 免费成人在线观看| 欧美日精品一区视频| 国产精品久久久久久亚洲伦| 国产一区二区三区蝌蚪| 3d成人h动漫网站入口| 亚洲综合色视频| 99久久99精品久久久久久| 久久久久久久久一| 久久精品国产精品亚洲综合| 欧美私模裸体表演在线观看| 中文字幕亚洲电影| 成人性生交大片免费看中文网站| 337p日本欧洲亚洲大胆精品| 蜜桃视频一区二区三区| 欧美日韩精品免费| 亚洲大片一区二区三区| 91成人免费在线| 亚洲裸体xxx| 91亚洲大成网污www| 国产精品久久久久久福利一牛影视 | 欧美三级电影一区| 最新国产精品久久精品| 成人性视频网站| 中国av一区二区三区| 国产精品一区专区| 久久久噜噜噜久久中文字幕色伊伊| 精品视频一区二区三区免费| 亚洲乱码国产乱码精品精的特点 | 免费在线视频一区| 欧美精品色一区二区三区| 亚洲午夜激情av| 欧美性生活大片视频| 一级中文字幕一区二区| 在线视频亚洲一区| 亚洲一区二区av在线| 欧美日韩三级在线| 日韩av电影一区| 欧美电影免费观看高清完整版| 精品一二线国产| 日韩一级精品视频在线观看| 男男视频亚洲欧美| 久久综合九色综合欧美亚洲| 国产麻豆日韩欧美久久| 欧美国产一区视频在线观看| 成人午夜av在线| 亚洲人亚洲人成电影网站色| 在线这里只有精品| 日韩福利视频导航| 精品成人免费观看| 成人性生交大片免费看在线播放 | 日本中文字幕一区二区有限公司| 欧美一区二区三区免费大片| 青青草原综合久久大伊人精品 | 欧美日韩mp4| 免费在线观看视频一区| 日韩美女视频在线| 国产91精品精华液一区二区三区| 久久精品一区二区三区不卡牛牛| av资源站一区| 亚洲国产一区视频| 久久只精品国产| 91亚洲资源网| 青青草一区二区三区| 欧美国产日韩精品免费观看| 91精品91久久久中77777| 喷水一区二区三区| 欧美国产精品一区二区| 欧美怡红院视频| 国产综合一区二区| 国产精品超碰97尤物18| 欧美日韩国产综合一区二区三区| 国产尤物一区二区| 亚洲一二三四区不卡| 欧美成人a∨高清免费观看| 99久久免费精品高清特色大片| 亚洲第一在线综合网站| 久久久久久一二三区| 欧美在线不卡一区| 国产精品一区二区视频| 亚洲风情在线资源站| 国产女人18水真多18精品一级做 | 国产精品国产精品国产专区不片| 欧美日韩国产综合一区二区| 风间由美一区二区av101| 五月婷婷激情综合网| 国产精品国产三级国产a | 国产色91在线| 欧美日韩国产免费一区二区| 岛国精品在线观看| 日本成人在线电影网| 国产精品久久久久久久久免费相片 | 中文字幕一区二区5566日韩| 欧美一级片在线| 91农村精品一区二区在线| 国产精品一级二级三级| 三级亚洲高清视频| 一二三区精品福利视频| 国产女人aaa级久久久级|