?? kpca_calc.m
字號:
function basis = kpca_calc(xs,kernel,d,kmataxis);%KPCA_CALC calculates a kernel PCA basis.%% usage% basis = kpca_calc(xs,kernel,d);%% input% xs matrix of column vectors% kernel a chosen kernel, default = {'gaussian',1}% d number of eigenvectors (give for efficiency),% default = size(xs,2)% kmataxis is a figure handle where the kernel matrix will be% plotted (default = 0 no plot)%% output% basis struct containing the following entries% basis.V eigenvectors% basis.Lambda eigenvalues% basis.xs used vectors% basis.kernel used kernel%% see also% kpca_plot, kpca_map%% STH * 12MAR2002if ~exist('kernel')|isempty(kernel), kernel = {'gaussian',1}; endif ~exist('d')|isempty(d), d = size(xs,2); endif ~exist('kmataxis')|isempty(kmataxis), kmataxis = 0; end% d can't be larger than the number of samplesif d>size(xs,2) warning('d is larger than the number of samples, resetting d') d = size(xs,2);endxsc = size(xs,2); % column of xs% calculate the kernel matrixK = kpca_matrix(xs,xs,kernel);if kmataxis>0 cf = gcf; figure(kmataxis) imagesc(K) figure(cf)end% center the kernel matrixsk = size(K,1); % note, K is square matrixrowK = sum(K)/sk; % the sums of the columnsallK = sum(K(:))/(sk*sk); % the sum of all entriesK = K - repmat(rowK,[sk 1]) - repmat(rowK',[1 sk]) + repmat(allK,[sk sk]);% find the eigenvectors and eigenvaluesswitch 2 case 1 [V,Lambda] = jdqr(K/sk,d); case 2 opts.disp = 0; [V,Lambda,flag] = eigs(K/sk,d,'LM',opts); if flag warning([mfilename ': not all eigenvalues converged']) endend% we can not assume that the eigenvalues are sorted[dummy, ind] = sort(-diag(Lambda));Lambda = Lambda(ind,ind);V = V(:,ind);% due to numerical instabilities some eigenvalues might be negative% or smaller than eps, we want to ignore thosevalid = find(diag(Lambda)<2*eps);if length(valid)<1 % all eigenvalues are valid, keep d unchangedelse % some are not valid d = valid(1)-1; warning([mfilename ': some eigenvalues of kernel matrix are less than eps'])endclear valid% cut off those eigenvalues and eigenvectorsV = V(:,1:d);Lambda = Lambda(1:d,1:d);% normalize the eigenvectors in feature spaceV = V*inv(sqrtm(sk*Lambda));% assign structbasis.V = V;basis.Lambda = Lambda;basis.xs = xs;basis.kernel = kernel;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -