?? weakclassifybatch.m
字號:
function [error,Result]=WeakClassifyBatch(X,Y,H,W,WLearner)% Same as WeakClassify but classifies an array of inputs X% also finds the error of classification ,% assumes correct classification is given (Y)% Input% X - array of vector to be classified% Y correct classification% H - a hypothesis/claassifier used% H is a stucture of parameters characteristic of the hypothesis% parameters depend on the learning procedure % in particular use 2-class Gaussian model: % Mu=H{1};% Mu(1),Mu(2)-means of the 2 classes% InvSigma=H{2} % InvSigma(1),InvSigma(2)- std. deviations of 2 classes% W - distribution over the input samples %% %% Output:% error - error of classification% Result - 0 if X does not belong to the class(class 1),1 else %N=size(X,1);error=0;for i=1:N switch (WLearner) case {'Gauss','Gaussian'} Result(i)=WeakClassifyGauss(X(i,:),H); case 'ROC' Result(i)=WeakClassifyROC(X(i,:),H); otherwise %no weak learner available return; end; %%%%% Result(i)=WeakClassify2(X(i,:),H); error=error+abs(Result(i)-Y(i))*W(i);end;
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -