?? weakclassify.m
字號:
function [Result]=WeakClassify(X,H,WLearner)%% Input% X - vector to be classified% H - a hypothesis/claassifier used% H is a stucture of parameters characteristic of the hypothesis% parameters depend on the learning procedure % % in particular use 2-class Gaussian model: % Mu=H{1}; % Mu(1),Mu(2)-means of the 2 classes% InvSigma=H{2}% InvSigma(1),InvSigma(2)-invserse if std. deviation matrices of% the 2 classes%%% WLearner - weak learner type%% Output:% Result - 0 if X does not belong to the class(class 1),1 else %switch (WLearner) case {'Gauss','Gaussian'} Result=WeakClassifyGauss(X,H); case 'ROC' Result=WeakClassifyROC(X,H); otherwise %no weak learner available return;end;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -