亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? decisiontree.java

?? Decision Tree 決策樹算法ID3 數(shù)據(jù)挖掘 分類
?? JAVA
?? 第 1 頁 / 共 2 頁
字號(hào):
     * @param node The base node where level assignment will start.
     * @param baseLevel The initial level for the base Node.
     */
    public void assign_subtree_levels(Node node, int baseLevel) {
        //   MLJ.ASSERT(baseLevel != DEFAULT_LEVEL);
        NodeInfo rootInfo = cGraph.node_info(node);
        logOptions.LOG(5, "Replacing level "+rootInfo.level()+" with "+baseLevel+'\n');
        cGraph.node_info(node).set_level(baseLevel);
        Edge iterEdge;
        Edge oldEdge;
        iterEdge = node.first_adj_edge();
        int nextLevel;
        //   if (get_categorizer(node).class_id() == CLASS_MULTI_SPLIT_CATEGORIZER)
        //      nextLevel = baseLevel;
        //   else
        nextLevel = baseLevel + 1;
        while (iterEdge != null) {
            oldEdge = iterEdge;
            iterEdge = oldEdge.adj_succ();
            Node childNode = oldEdge.target();
            assign_subtree_levels(childNode, nextLevel);
        }
    }
    
    /***************************************************************************
  Display this DecisionTree.
@param
@param
@param
@param
     ***************************************************************************
   public void display(boolean hasNodeLosses, boolean hasLossMatrix,
      Writer stream, DisplayPref dp)
   {
      stream.write(display(hasNodeLosses, hasLossMatrix, dp));
   }
 
/***************************************************************************
  Display this DecisionTree.
@param
@param
@param
     ***************************************************************************
   public String display(boolean hasNodeLosses, boolean hasLossMatrix,
      DisplayPref dp)
   {
      String return_value = new String();
   // Note that if the display is XStream, our virtual function gets it
//   if (stream.output_type() == XStream ||
//      dp.preference_type() != DisplayPref::TreeVizDisplay)
//      RootedCatGraph.display(hasNodeLosses, hasLossMatrix, stream, dp);
      else
      {
         String dataName = stream.description() + ".data";
         MLCOStream data(dataName);
         convertToTreeVizFormat(stream, data, dp, hasNodeLosses, hasLossMatrix);
      }
   }
     */
    
/*
/***************************************************************************
  Displays the DecisionTree in TreeVizFormat.
@param
@param
@param
@param
@param
 ***************************************************************************
   public void convertToTreeVizFormat(Writer conf, Writer data,
      DisplayPref displayPref,
      boolean hasNodeLosses,
      boolean hasLossMatrix) throws IOException
   {
      Node rootNode = get_root(true);
 
      NodeCategorizer cat = get_categorizer(rootNode);
      Schema schema = cat.get_schema();
      NominalAttrInfo nai = schema.nominal_label_info();
      int numLabelValues = nai.num_values();
      MLJ.ASSERT(numLabelValues >= 1,"DecisionTree::convertToTreeVizFormat:numLabelValues < 1");
   // Avoid log of 1, which is a scale of zero, and causes division
   //    by zero.
      double scale = MLJ.log_bin(Math.max(numLabelValues, 2));
      int[] permLabels = schema.sort_labels(); // permuted labels
 
      boolean dispBackfitDisks =
         displayPref.typecast_to_treeViz().get_display_backfit_disks();
      write_subtree(get_log_options(), scale, data, permLabels,
         Globals.EMPTY_STRING, Globals.EMPTY_STRING, this, rootNode,
         dispBackfitDisks, hasNodeLosses, hasLossMatrix);
 
      String protectedLabelName = new String(Globals.SINGLE_QUOTE + MLJ.protect(nai.name(),"`\\")
         + Globals.SINGLE_QUOTE);
 
      conf.write(minesetVersionStr + "\n");
      conf.write("# MLC++ generated file for MineSet Tree Visualizer.\n"
         + "input {\n"
         + "\t file \"" + data.description() + "\";\n"
         + "\t options backslash on;\n"
         + "\t key string " + protectedLabelName + " {\n");
 
      for (int i = 0; i < numLabelValues; i++)
      {
         conf.write("\t\t " + nai.get_value(permLabels[i]).quote());
         if (i != numLabelValues - 1)
            conf.write(",");
         conf.write("\n");
      }
      permLabels = null;
 
 
      conf.write("\t };\n"
         + "\t expression `Node label`[] separator ':';\n"
         + "\t string `Test attribute`;\n"
         + "\t string `Test value`;\n"
         + "\t float `Subtree weight` [" + protectedLabelName
         + "] separator ',' ;\n"
         + "\t float Percent [" + protectedLabelName + "] separator ',' ;\n");
      if (dispBackfitDisks)
         conf.write("\t float OriginalDist [" + protectedLabelName
           + "] separator ',' ;\n");
      conf.write("\t float Purity;\n");
 
      if (hasNodeLosses)
      {
         conf.write("\t float `Test-set subtree weight`;\n");
         if (hasLossMatrix)
            conf.write("\t float `Test-set loss`;\n"
               + "\t float `Mean loss std-dev`;\n");
         else
            conf.write("\t float `Test-set error`;\n"
               + "\t float `Mean err std-dev`;\n");
      }
 
      conf.write("}\n\n");
 
      conf.write("hierarchy {\n"
         + "\t levels `Node label`;\n"
         + "\t key `Subtree weight`;\n"
         + "\t aggregate base {\n"
         + "\t\t sum `Subtree weight`;\n");
      if (dispBackfitDisks)
         conf.write("\t\t sum `OriginalDist`;\n");
      conf.write("\t\t any Purity;\n"
         + "\t\t any `Test attribute`;\n"
         + "\t\t any `Test value`;\n");
 
      if (hasNodeLosses)
      {
         conf.write("\t\t any `Test-set subtree weight`;\n");
         if (hasLossMatrix)
            conf.write("\t\t any `Test-set loss`;\n"
               + "\t\t any `Mean loss std-dev`;\n");
         else
            conf.write("\t\t any `Test-set error`;\n"
               + "\t\t any `Mean err std-dev`;\n");
      }
 
      conf.write("\t }\n"
         + "\t options organization same;\n"
         + "}\n");
 
   // Pick the midpoint entropy color to be 3/4 versus 1/4 for two class probs.
   // This just makes the color scale much better then 50, which requires
   // 89% versus 11% to be the middle color.
      double[] typicalMix = new double[2];
      typicalMix[0] = 3;
      typicalMix[1] = 1;
      DoubleRef midPointEnt = new DoubleRef(100 - Entropy.entropy(typicalMix)*100 / scale);
      MLJ.clamp_to_range(midPointEnt, 0, 100,
         "DecisionTree::convertToTreeVizFormat: mid-point does "
         + "not clamp to range [0-100]");
 
      MLJ.ASSERT(schema.num_label_values() > 0,"DecisionTree::"
         + "convertToTreeVizFormat:schema.num_label_values() <= 0");
   // Even though nulls are never used, we want to distinguish
   // them in case somebody changes anything.  They're therefore hidden.
      conf.write("view hierarchy landscape {\n"
         + "\t height `Subtree weight`, normalize, max 5.0;\n");
      if (dispBackfitDisks)
         conf.write("\t disk height `OriginalDist`;\n");
      conf.write("\t base height max 2.0;\n"
         + "\t base label `Test attribute`;\n"
         + "\t line label `Test value`;\n"
         + "\t color key;\n");
      //   	   "\t base color legend label \"Purity\";\n"
      //     "\t base color Purity, "
      //     "colors \"red\" \"yellow\" \"green\""
      //           ", scale 0 " << midPointEnt << " 100, legend on;\n"
      //     "\t base color legend \"impure\" \"mixed\" \"pure\";\n"
      if (hasNodeLosses)
      {
         double min = 0;
         double max = 0;
         loss_min_max(this, min, max);
         if (max - min < 0.01)
         max += 0.01; // Avoid cases where both are zero and we rely
                      // on a treeviz tiebreaker (happens in mushroom).
         NodeLoss rootLoss = get_categorizer(rootNode).get_loss();
         double medColor = suggest_mid(min, max, rootLoss.totalWeight,
            rootLoss.totalLoss);
 
         if (!hasLossMatrix)
         {
            min *= 100;
            max *= 100;
            medColor *=100;
         }
 
         if (hasLossMatrix)
         conf.write("\t base color legend label \"Test-set loss\";\n"
            + "\t base color `Test-set loss`, ");
         else
            conf.write("\t base color legend label \"Test-set error\";\n"
            + "\t base color `Test-set error`, ");
 
 
         conf.write("colors \"green\" \"yellow\" \"red\""
            + ", scale " + min + " " + medColor
            + " " + max + ", legend on;\n"
            + "\t base color legend \"low ("
            + MLJ.numberToString(min,2) + ")\" \"medium ("
            + MLJ.numberToString(medColor,2) + ")\" \"high ("
            + MLJ.numberToString(max,2) + ")\";\n");
      }
      conf.write("\t options rows 1;\n"
         + "\t options root label \"\";\n"
         + "\t options initial depth 4;\n"
            // Don't show bar labels, so the level of details is far
         + "\t options lod bar label 10000;\n"
         + "\t options zero outline;\n"
         + "\t options null hidden;\n");
 
      conf.write("\t base message \"Subtree weight:%.2f, ");
      String lossMetric = hasLossMatrix ? "loss" : "error";
      String shortLossMetric = hasLossMatrix ? "loss" : "err";
      if (hasNodeLosses)
         conf.write("test-set " + lossMetric + ":%.2f+-%.2f, "
            + " test-set weight:%.2f, ");
      if (dispBackfitDisks)
         conf.write("training-set weight: %.2f, ");
      conf.write("purity:%.2f\", `Subtree weight`, ");
         if (hasNodeLosses)
      conf.write("`Test-set " + lossMetric + "`, "
         + "`Mean " + shortLossMetric + " std-dev`, "
         + "`Test-set subtree weight`, ");
      if (dispBackfitDisks)
         conf.write("`OriginalDist`, ");
      conf.write("Purity;\n");
 
      conf.write("\t message \"Subtree weight for label value:%.2f, percent:%.2f");
      if (dispBackfitDisks)
         conf.write(", training-set weight:%.2f");
      conf.write("\", `Subtree weight`, Percent");
      if (dispBackfitDisks)
         conf.write(", `OriginalDist`");
      conf.write(";\n}\n");
   }
 */
}

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本高清不卡aⅴ免费网站| 中文字幕巨乱亚洲| 91精彩视频在线| 成人18视频在线播放| 国产乱一区二区| 激情五月婷婷综合网| 蜜桃精品视频在线观看| 蜜桃av一区二区| 国产中文字幕一区| 国产成人免费视频一区| 粗大黑人巨茎大战欧美成人| 成人一区二区三区在线观看| 顶级嫩模精品视频在线看| 成人黄色国产精品网站大全在线免费观看| 国产成人综合视频| 成人动漫av在线| 色综合久久久久| 欧美午夜理伦三级在线观看| 欧美日韩的一区二区| 欧美精品亚洲二区| 精品久久久久久综合日本欧美 | 中文字幕欧美日韩一区| 欧美国产精品中文字幕| 国产精品传媒入口麻豆| 国产精品白丝在线| 亚洲一区电影777| 奇米777欧美一区二区| 九色porny丨国产精品| 成人性视频免费网站| a级精品国产片在线观看| 在线日韩一区二区| 日韩视频免费观看高清完整版在线观看 | 欧美一卡在线观看| ww久久中文字幕| 国产精品国产三级国产普通话99| 亚洲人成亚洲人成在线观看图片| 亚洲国产一二三| 久久精品国产免费看久久精品| 国内成人精品2018免费看| 成人av免费在线| 欧美日韩一级黄| 久久人人97超碰com| 亚洲免费av高清| 蜜桃一区二区三区四区| 99视频有精品| 欧美精品18+| 久久综合狠狠综合久久综合88| 国产精品久久久久久久久免费丝袜 | 欧美少妇一区二区| 久久久美女艺术照精彩视频福利播放| 国产精品久久久久aaaa| 日本亚洲最大的色成网站www| 国产在线不卡一卡二卡三卡四卡| 91免费看视频| xvideos.蜜桃一区二区| 亚洲成人www| 成人国产精品免费观看动漫| 91精品国产色综合久久ai换脸 | 手机精品视频在线观看| 国产精品亚洲午夜一区二区三区| 欧美日韩在线播放三区四区| 久久综合九色综合欧美亚洲| 亚洲成人综合在线| 成人一二三区视频| 日韩亚洲欧美综合| 亚洲精品久久久蜜桃| 狠狠网亚洲精品| 欧美视频在线不卡| 中文字幕一区二区5566日韩| 奇米精品一区二区三区在线观看 | 蜜桃av一区二区三区电影| 91小视频在线观看| 久久久亚洲欧洲日产国码αv| 性欧美大战久久久久久久久| av在线一区二区| 精品av综合导航| 丝袜美腿亚洲一区二区图片| 色欧美片视频在线观看在线视频| 久久免费看少妇高潮| 奇米影视7777精品一区二区| 欧美日韩一区二区三区高清| 亚洲女人****多毛耸耸8| 国产成人精品影视| 精品国产麻豆免费人成网站| 午夜视黄欧洲亚洲| 色狠狠综合天天综合综合| 中文字幕精品一区二区精品绿巨人| 久久99日本精品| 91精品国产综合久久久久| 亚洲午夜免费视频| 色香蕉成人二区免费| 国产精品另类一区| 成人永久免费视频| 久久久精品日韩欧美| 国产毛片精品国产一区二区三区| 日韩欧美亚洲另类制服综合在线| 视频一区中文字幕| 欧美日韩1234| 日本欧美在线看| 91精品国产综合久久久久| 日韩和欧美的一区| 欧美一区二区不卡视频| 男人的j进女人的j一区| 欧美二区乱c少妇| 日韩国产欧美三级| 日韩一级视频免费观看在线| 免费观看在线综合色| 日韩欧美国产wwwww| 精品一区二区三区不卡| 精品国产乱码久久久久久牛牛 | 欧美日韩精品一区二区三区蜜桃| 亚洲毛片av在线| 日本韩国一区二区| 亚洲一区在线观看视频| 欧美日韩视频第一区| 亚洲高清免费观看| 这里只有精品电影| 久久精品国产77777蜜臀| 久久综合精品国产一区二区三区| 国产馆精品极品| 国产精品国产a级| 色香蕉久久蜜桃| 午夜精品国产更新| 精品国免费一区二区三区| 国产传媒日韩欧美成人| 自拍偷拍欧美精品| 欧美影视一区二区三区| 日本不卡123| 久久久久久久久久久久久夜| 成人伦理片在线| 亚洲一区视频在线| 欧美一区二区美女| 国产精品18久久久久久久网站| 国产精品欧美一级免费| 色8久久人人97超碰香蕉987| 日韩在线观看一区二区| 久久嫩草精品久久久精品一| 97精品久久久午夜一区二区三区| 亚洲国产视频网站| 日韩精品中文字幕一区二区三区 | 中文字幕一区不卡| 欧美日韩在线播| 国产精品原创巨作av| 亚洲欧美日韩一区二区三区在线观看| 欧美在线不卡视频| 狠狠色狠狠色合久久伊人| 国产精品久久久久aaaa樱花| 欧美久久久一区| 国产99久久久国产精品潘金网站| 亚洲三级免费电影| 欧美一级日韩免费不卡| 国产99精品视频| 亚洲成国产人片在线观看| 国产亚洲午夜高清国产拍精品| 日本韩国精品一区二区在线观看| 蜜桃视频免费观看一区| 亚洲三级在线播放| 2021中文字幕一区亚洲| 欧美曰成人黄网| 国产高清视频一区| 性欧美大战久久久久久久久| 欧美国产禁国产网站cc| 欧美一级二级三级蜜桃| 97久久精品人人爽人人爽蜜臀| 久久精品72免费观看| 亚洲精品日韩综合观看成人91| 亚洲精品一区二区三区香蕉| 欧美亚日韩国产aⅴ精品中极品| 国内一区二区视频| 午夜精品免费在线观看| 国产精品美女久久久久久久久| 日韩欧美aaaaaa| 欧美日韩免费在线视频| aaa欧美日韩| 国内精品嫩模私拍在线| 午夜精品福利久久久| 亚洲免费观看高清完整版在线| 国产亚洲欧美一级| 精品久久五月天| 这里只有精品视频在线观看| 色哟哟精品一区| jizzjizzjizz欧美| 国产剧情一区在线| 麻豆91在线播放免费| 午夜精品久久久| 亚洲一区在线观看视频| 亚洲欧美一区二区三区孕妇| 久久精品人人做人人综合 | 亚洲人成亚洲人成在线观看图片| 337p粉嫩大胆色噜噜噜噜亚洲| 欧美一级片在线| 91 com成人网| 欧美三级日本三级少妇99| 91在线观看视频| 成人午夜激情在线| 国产精品538一区二区在线| 精品在线观看视频| 美女视频黄 久久| 免费在线一区观看| 强制捆绑调教一区二区|