?? ddr.v
字號:
/****************************************************************************************
*
* File Name: ddr.v
*
*****************************************************************************************/
// DO NOT CHANGE THE TIMESCALE
// MAKE SURE YOUR SIMULATOR USE "PS" RESOLUTION
`timescale 1ns / 1ps
module ddr (Clk, Clk_n, Cke, Cs_n, Ras_n, Cas_n, We_n, Ba , Addr, Dm, Dq, Dqs);
`include "ddr_parameters.vh"
// Port Declarations
input Clk;
input Clk_n;
input Cke;
input Cs_n;
input Ras_n;
input Cas_n;
input We_n;
input [1 : 0] Ba;
input [ADDR_BITS - 1 : 0] Addr;
input [DM_BITS - 1 : 0] Dm;
inout [DQ_BITS - 1 : 0] Dq;
inout [DQS_BITS - 1 : 0] Dqs;
// Internal Wires (fixed width)
wire [31 : 0] Dq_in;
wire [3 : 0] Dqs_in;
wire [3 : 0] Dm_in;
assign Dq_in [DQ_BITS - 1 : 0] = Dq;
assign Dqs_in [DQS_BITS - 1 : 0] = Dqs;
assign Dm_in [DM_BITS - 1 : 0] = Dm;
// Data pair
reg [31 : 0] dq_rise;
reg [3 : 0] dm_rise;
reg [31 : 0] dq_fall;
reg [3 : 0] dm_fall;
reg [7 : 0] dm_pair;
reg [31 : 0] Dq_buf;
// Mode Register
reg [ADDR_BITS - 1 : 0] Mode_reg;
// Internal System Clock
reg CkeZ, Sys_clk;
// Internal Dqs initialize
reg Dqs_int;
// Dqs buffer
reg [DQS_BITS - 1 : 0] Dqs_out;
// Dq buffer
reg [DQ_BITS - 1 : 0] Dq_out;
// Read pipeline variables
reg Read_cmnd [0 : 6];
reg [1 : 0] Read_bank [0 : 6];
reg [COL_BITS - 1 : 0] Read_cols [0 : 6];
// Write pipeline variables
reg Write_cmnd [0 : 3];
reg [1 : 0] Write_bank [0 : 3];
reg [COL_BITS - 1 : 0] Write_cols [0 : 3];
// Auto precharge variables
reg Read_precharge [0 : 3];
reg Write_precharge [0 : 3];
integer Count_precharge [0 : 3];
// Manual precharge variables
reg A10_precharge [0 : 6];
reg [1 : 0] Bank_precharge [0 : 6];
reg Cmnd_precharge [0 : 6];
// Burst terminate variables
reg Cmnd_bst [0 : 6];
// Memory Banks
`ifdef FULL_MEM
reg [DQ_BITS - 1 : 0] mem_array [0 : (1<<full_mem_bits)-1];
`else
reg [DQ_BITS - 1 : 0] mem_array [0 : (1<<part_mem_bits)-1];
reg [full_mem_bits - 1 : 0] addr_array [0 : (1<<part_mem_bits)-1];
reg [part_mem_bits : 0] mem_used;
initial mem_used = 0;
`endif
// Dqs edge checking
integer i;
reg [3 :0] expect_pos_dqs;
reg [3 :0] expect_neg_dqs;
// Burst counter
reg [COL_BITS - 1 : 0] Burst_counter;
// Precharge variables
reg Pc_b0, Pc_b1, Pc_b2, Pc_b3;
// Activate variables
reg Act_b0, Act_b1, Act_b2, Act_b3;
// Data IO variables
reg Data_in_enable;
reg Data_out_enable;
// Internal address mux variables
reg [1 : 0] Prev_bank;
reg [1 : 0] Bank_addr;
reg [COL_BITS - 1 : 0] Cols_addr, Cols_brst, Cols_temp;
reg [ADDR_BITS - 1 : 0] Rows_addr;
reg [ADDR_BITS - 1 : 0] B0_row_addr;
reg [ADDR_BITS - 1 : 0] B1_row_addr;
reg [ADDR_BITS - 1 : 0] B2_row_addr;
reg [ADDR_BITS - 1 : 0] B3_row_addr;
// DLL Reset variable
reg DLL_enable;
reg DLL_reset;
reg DLL_done;
integer DLL_count;
integer aref_count;
integer Prech_count;
reg power_up_done;
// Write DQS for tDSS, tDSH, tDQSH, tDQSL checks
wire wdqs_valid = Write_cmnd[2] || Write_cmnd[1] || Data_in_enable;
// Commands Decode
wire Active_enable = ~Cs_n & ~Ras_n & Cas_n & We_n;
wire Aref_enable = ~Cs_n & ~Ras_n & ~Cas_n & We_n;
wire Burst_term = ~Cs_n & Ras_n & Cas_n & ~We_n;
wire Ext_mode_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n & Ba[0] & ~Ba[1];
wire Mode_reg_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n & ~Ba[0] & ~Ba[1];
wire Prech_enable = ~Cs_n & ~Ras_n & Cas_n & ~We_n;
wire Read_enable = ~Cs_n & Ras_n & ~Cas_n & We_n;
wire Write_enable = ~Cs_n & Ras_n & ~Cas_n & ~We_n;
// Burst Length Decode
wire [3:0] burst_length = 1 << (Mode_reg[2:0]);
reg [3:0] read_precharge_truncation;
// CAS Latency Decode
wire [2:0] cas_latency_x2 = (Mode_reg[6:4] === 3'o6) ? 5 : 2*Mode_reg[6:4];
// DQS Buffer
assign Dqs = Dqs_out;
// DQ Buffer
assign Dq = Dq_out;
// Timing Check
time MRD_chk;
time RFC_chk;
time RRD_chk;
time RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
time RAP_chk0, RAP_chk1, RAP_chk2, RAP_chk3;
time RC_chk0, RC_chk1, RC_chk2, RC_chk3;
time RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
time RP_chk0, RP_chk1, RP_chk2, RP_chk3;
time WR_chk0, WR_chk1, WR_chk2, WR_chk3;
initial begin
CkeZ = 1'b0;
Sys_clk = 1'b0;
{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;
{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b1111;
Dqs_int = 1'b0;
Dqs_out = {DQS_BITS{1'bz}};
Dq_out = {DQ_BITS{1'bz}};
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
DLL_enable = 1'b0;
DLL_reset = 1'b0;
DLL_done = 1'b0;
DLL_count = 0;
aref_count = 0;
Prech_count = 0;
power_up_done = 0;
MRD_chk = 0;
RFC_chk = 0;
RRD_chk = 0;
{RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;
{RAP_chk0, RAP_chk1, RAP_chk2, RAP_chk3} = 0;
{RC_chk0, RC_chk1, RC_chk2, RC_chk3} = 0;
{RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;
{RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;
{WR_chk0, WR_chk1, WR_chk2, WR_chk3} = 0;
$timeformat (-9, 3, " ns", 12);
end
// System Clock
always begin
@ (posedge Clk) begin
Sys_clk = CkeZ;
CkeZ = Cke;
end
@ (negedge Clk) begin
Sys_clk = 1'b0;
end
end
// Check to make sure that we have a Deselect or NOP command on the bus when CKE is brought high
always @(Cke) begin
if (Cke === 1'b1) begin
if (!((Cs_n) || (~Cs_n & Ras_n & Cas_n & We_n))) begin
$display ("%m: at time %t MEMORY ERROR: You must have a Deselect or NOP command applied", $time);
$display ("%m: when the Clock Enable is brought High.");
end
end
end
// Check the initialization sequence
initial begin
@ (posedge Cke) begin
@ (posedge DLL_enable) begin
aref_count = 0;
@ (posedge DLL_reset) begin
@ (Prech_count) begin
if (aref_count >= 2) begin
if (DEBUG) $display ("%m: at time %t MEMORY: Power Up and Initialization Sequence is complete", $time);
power_up_done = 1;
end else begin
aref_count = 0;
@ (aref_count >= 2) begin
if (DEBUG) $display ("%m: at time %t MEMORY: Power Up and Initialization Sequence is complete", $time);
power_up_done = 1;
end
end
end
end
end
end
end
// Write Memory
task write_mem;
input [full_mem_bits - 1 : 0] addr;
input [DQ_BITS - 1 : 0] data;
reg [part_mem_bits : 0] i;
begin
`ifdef FULL_MEM
mem_array[addr] = data;
`else
begin : loop
for (i = 0; i < mem_used; i = i + 1) begin
if (addr_array[i] === addr) begin
disable loop;
end
end
end
if (i === mem_used) begin
if (i === (1<<part_mem_bits)) begin
$display ("At time %t ERROR: Memory overflow.\n Write to Address %h with Data %h will be lost.\n You must increase the part_mem_bits parameter or `define FULL_MEM.", $time, addr, data);
end else begin
mem_used = mem_used + 1;
addr_array[i] = addr;
end
end
mem_array[i] = data;
`endif
end
endtask
// Read Memory
task read_mem;
input [full_mem_bits - 1 : 0] addr;
output [DQ_BITS - 1 : 0] data;
reg [part_mem_bits : 0] i;
begin
`ifdef FULL_MEM
data = mem_array[addr];
`else
begin : loop
for (i = 0; i < mem_used; i = i + 1) begin
if (addr_array[i] === addr) begin
disable loop;
end
end
end
if (i <= mem_used) begin
data = mem_array[i];
end
`endif
end
endtask
// Burst Decode
task Burst_Decode;
begin
// Advance Burst Counter
if (Burst_counter < burst_length) begin
Burst_counter = Burst_counter + 1;
end
// Burst Type
if (Mode_reg[3] === 1'b0) begin // Sequential Burst
Cols_temp = Cols_addr + 1;
end else if (Mode_reg[3] === 1'b1) begin // Interleaved Burst
Cols_temp[2] = Burst_counter[2] ^ Cols_brst[2];
Cols_temp[1] = Burst_counter[1] ^ Cols_brst[1];
Cols_temp[0] = Burst_counter[0] ^ Cols_brst[0];
end
// Burst Length
if (burst_length === 2) begin
Cols_addr [0] = Cols_temp [0];
end else if (burst_length === 4) begin
Cols_addr [1 : 0] = Cols_temp [1 : 0];
end else if (burst_length === 8) begin
Cols_addr [2 : 0] = Cols_temp [2 : 0];
end else begin
Cols_addr = Cols_temp;
end
// Data Counter
if (Burst_counter >= burst_length) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
read_precharge_truncation = 4'h0; end
end
endtask
// Manual Precharge Pipeline
task Manual_Precharge_Pipeline;
begin
// A10 Precharge Pipeline
A10_precharge[0] = A10_precharge[1];
A10_precharge[1] = A10_precharge[2];
A10_precharge[2] = A10_precharge[3];
A10_precharge[3] = A10_precharge[4];
A10_precharge[4] = A10_precharge[5];
A10_precharge[5] = A10_precharge[6];
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -