亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? fit_modelbrain_hmm_domain.m

?? The BNL toolbox is a set of Matlab functions for defining and estimating the parameters of a Bayesi
?? M
字號:
%main file for estimation prob graphical models
%here, the hierarchical hidden markov model with time interval as a covariate for transitions between signals is taken as an example
%see the examples in the example map for other specific models
%or define your own model
%to be done for each model
    %1.load data 
    %2.define bayes net (model structure)
    %3.define equivalence sets of nodes, and link function and design
        %matrix for each equivalent set
    %4. estimation, automatic after speciofication of 1-3
    %5. postestimation: compute standard errors, save results 

%%%%%
%1.load data
%%%%%
    %obs_variables: the observed variables that are nodes in the
    %graphical model
        %obs_variables is structure :
            %obs_variables.names: cell array of names (does not have to be
        %defined)
            %obs_variables.datamatrix: 'wide' format datamatrix, there is a
                %separate row for each independent case (e.g. two repeated
                %measurements defines two separate variables)
                %missings are coded by the value -1
        
        %matlab import wizard can be used to import data from e.g. excel
        obs_variables.datamatrix=xlsread('braindata');
    
    %covariates: the covariates, variables that vary over cases
        %but that are themselves not included as separate nodes in the network
        %covariates.names: cell array of names
        %covariates.matrix: again 'wide' format.
        %covariates=struct([]); %default
        %covariates.matrix=xlsread('conditie'); %function to read the time covariate of Rijmen, vansteelandt, De Boeck
        %covariates.names={'treatment_A','treatment_C'};
        

        
%%%%%       
%2.define bayes net (model structure)
%%%%%

    %specify bayes net using one of the construct_bnet functions or use your own
        %here: rijmen, ip et al paper on brain cancer patients, with random effect within states 
    %specifications of options for the construct_bnet function that is used. 
    S=4;% number of latent states 
    D=5; %number of measurements
    M=13; %number of items at each measurement occasion
    S_item=2;%number of response categories for items
    
    N=size(obs_variables.datamatrix,1); %number of cases
    %bnet construction
    [bnet,evidence_nodes,partial_evidence_nodes,terminal_merged_nodes,hid_nodes,gausskwadnodes,...
    names,onames,order,inv_o]=...
    construct_bnet_hmm(D,S,M,S_item,obs_variables.datamatrix);
    %convert bnet object from BNT (Murphy) into what we need 
    [parents,child,node_sizes,postorder,preorder,cliquetable,septable,clq_ass_to_node,pot_to_CPT]= franks_from_BNT(bnet,size(obs_variables.datamatrix,1));
    

%%%%
%3.define equivalence sets of nodes, link function,  design
    %matrix and restrictions on parameters for each equivalent (parameter) set
%%%%
    %equivalent nodes are nodes with the same design matrix, the same link and governed by the same set of parameters 
    %param_equivalent nodes are nodes with a differnetn design matrix, but
    %the same link and governed by the same set of parameters
    nr_nodes=length(onames);
    equiv_class=zeros(nr_nodes,1);
    equiv_class(strmatch('timepoint_1',onames))=1;
    equiv_class(mysetdiff(strmatch('timepoint',onames),strmatch('timepoint_1',onames)))=2;
    equiv_class(strmatch('Y',onames))=3;
     
    param_equiv_class=equiv_class;

    nr_equiv=max(equiv_class);
    for i=1:nr_equiv
        link{i}='multinomial';
    end
    
    %design matrix for all equiv classes
        %first, define pred_mat which is a cell array. each cell contains
        %the design matrix of the
        %variable(s) in a node without modelling the parents. e.g. 
        %for a four-category variable, a 3*3 design matrix
        %case covariates are not yet included here 
        %default is an identity matrix
        pred_mat=construct_predmat(equiv_class,evidence_nodes,partial_evidence_nodes,terminal_merged_nodes,hid_nodes,gausskwadnodes);
        % item design matrices can be incorporated here as follows 
            %first find the class of equivalent nodes that contain the observed variables
            n=strmatch('Y',onames);
            n=n(1);
            eclass=equiv_class(n);
            %then input design matrix which is stored in file
            design=xlsread('domaindesign');
            pred_mat(eclass)={design};
        
        %second, define the structure of the linear predictor for each equiv class (no restrictions, only main effects for parents etc)    
        %saturated: no restrictions
        lin_pred_struct=define_lin_pred_struct_sat(equiv_class,parents);
        
        
   
        %third, construct design matrix for each node based on its pred_mat and  linear
        %predictor
        % no covariates yet
        design=construct_design_mats(parents,node_sizes,equiv_class,lin_pred_struct,pred_mat,gausskwadnodes);
        %further changes to design matrices can be done manually or
        %with code provided by user
        %here item main effects have to be included, so we need to add
        %eye(M) for design{3} and design{4}
        %domain effects of first class have to be put to zero for
        %identifiability (skip columns 2:4)
        ss=size(design{3},1)/M;
        design{3}(:,2:4)=[];
        design{3}=[design{3} repmat(eye(M),ss,1)];
        
        %fourth, inclusion of case covariates, makes design three dimensional, last
        %dimension represents cases

            %specify which covariates belong to which equivalent sets of
            %nodes
            %cov_nodes is cell array that contains as rows a pair of
            %equiv_class number,column numbers of the covariate matrix
            %cov_nodes={};%default
            %specify main and or interaction effects of the
            %covariates
            %default: interactions at highest level (covariates have different effect 
            %for each category of the dependent variable and combination of the parents   
            %in rijmen, ip et al. only main efffects of covariates
            %lin_pred_struct_cov = define_lin_pred_struct_cov_main(cov_nodes);
            %include covariates in design matrices
            %design=cov_into_design(covariates.matrix,cov_nodes,lin_pred_struct_cov,design,evidence_nodes,partial_evidence_nodes,terminal_merged_nodes,hid_nodes,gausskwadnodes,equiv_class);
            
        %fifth, further changes to design matrices can be done manually or
        %with code provided by user
            
  %define restrictions on parameters (gauss kwad nodes are
  %restricted automatically in gen_rand_start function below)
  restparms=cell(max(param_equiv_class),1);
      
  %default =0, no restrictions (1 =restricted at fixed value)
   for i=1:max(param_equiv_class);
       node_nr=find(param_equiv_class==i,1);
       restparms{i}=zeros(size(design{equiv_class(node_nr)},2),1);
  end
   
%%%%
%4. estimation, automatic after specification of 1-3
%%%%
    %estimation with EM
    %can be altered: number of runs, starting values, convergence criteria

    %number of runs
    nr=1; 
    for run=1:nr
        loglikelihood=-1e10;
        v=Inf;
        it=1;
        %starting values   (here: random start)
        [parms,restparms]=gen_random_start(design,parents,equiv_class,param_equiv_class,gausskwadnodes,link);
        loglikelihood=-1/eps;
        logl_diff=1;
        logl_avg=1;
        %EM loop
        while (v>.00000001 && logl_diff/logl_avg>.00000001 )
            %1 iteration
            parms_old=parms;
            loglikelihood_old=loglikelihood;
            [parms, restparms, loglikelihood ]=EM_iteration(link,parms,restparms,design,parents,node_sizes...
            ,equiv_class,param_equiv_class,evidence_nodes,partial_evidence_nodes,terminal_merged_nodes,hid_nodes,...
            gausskwadnodes,preorder, postorder ,cliquetable, septable,pot_to_CPT,N);    
            %check convergence
            v=0;
            for i=1:max(param_equiv_class)
                vvec=abs(parms_old{i}-parms{i});
                v=[v max(vvec)];
                v=max(v);
            end
            v
            it=it+1;
            logl_diff=loglikelihood-loglikelihood_old;
            if logl_diff<-.0001
                disp('decrease in loglikelihood. press any key to continue');
                pause;
            end
            logl_avg=(abs(loglikelihood)+abs(loglikelihood_old))/2
        end
%%%%
%5. postestimation: compute standard errors, save results ?
%%%%

        %compute final CPTs?
    	lin_pred=construct_lin_pred(parms,design,parents,node_sizes,equiv_class,param_equiv_class,terminal_merged_nodes,N);
        equiv_class_CPTs=construct_equiv_class_CPT(link,lin_pred,N);
    
        %save?
        %eval(['save D:\f\mijnmatlabfuncties\bayesnetfullgraph\kristof\test\beepitem_main_posneg2_tijd_juist_run',int2str(run),'_personstate',int2str(S_person),'_beepstate',int2str(S_beep),' parms loglikelihood equiv_class_CPTs ']);

        %compute standard errors?
        %info=num_infomatrix_anal_score(link,parms,restparms,design,parents,node_sizes,equiv_class,...
        %postorder,septable, cliquetable,preorder,param_equiv_class,clq_ass_to_node,evidence_nodes,...
        %partial_evidence_nodes,terminal_merged_nodes,hid_nodes,gausskwadnodes,N,.000001);
    end


    

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲欧美偷拍卡通变态| 亚洲综合偷拍欧美一区色| 精品日韩99亚洲| 欧美极品aⅴ影院| 亚洲成人精品一区二区| 麻豆成人在线观看| 波多野结衣中文一区| 在线看不卡av| 91精品国产91热久久久做人人 | 亚洲精品欧美综合四区| 日日夜夜一区二区| 国产成人精品综合在线观看 | 国产精品入口麻豆九色| 亚洲亚洲人成综合网络| 国产在线麻豆精品观看| 99精品国产99久久久久久白柏| 欧美精品123区| 国产精品久久久久久久裸模| 男女男精品视频| 色悠悠亚洲一区二区| 精品国产亚洲在线| 亚洲观看高清完整版在线观看| 国产成人一区二区精品非洲| 在线免费观看日本欧美| 国产精品另类一区| 另类欧美日韩国产在线| 在线观看中文字幕不卡| 国产喂奶挤奶一区二区三区| 日韩av一二三| 欧美视频一区二区三区四区 | 久久免费美女视频| 天堂蜜桃91精品| 色综合天天综合网天天狠天天| 欧美成人乱码一区二区三区| 午夜精品久久久久久久蜜桃app| 成人精品免费网站| 国产女人18毛片水真多成人如厕| 青青草成人在线观看| 欧美日韩一区在线观看| 综合激情成人伊人| 国产成a人无v码亚洲福利| 精品粉嫩超白一线天av| 美腿丝袜亚洲综合| 日韩一级黄色片| 日韩精品成人一区二区三区 | 一本到不卡免费一区二区| 国产欧美日韩三级| 国产成人精品一区二区三区四区| 日韩免费电影一区| 日本不卡123| 欧美一区二区视频在线观看2022| 亚洲一区二区三区四区在线| 在线视频国内自拍亚洲视频| 亚洲欧美偷拍三级| 欧美中文字幕亚洲一区二区va在线| 亚洲免费电影在线| 91啦中文在线观看| 亚洲欧美日本韩国| 色94色欧美sute亚洲线路二 | 亚洲韩国一区二区三区| 色婷婷综合中文久久一本| 亚洲欧洲www| 日本二三区不卡| 一区二区三区免费网站| 欧美日韩国产综合视频在线观看| 五月婷婷激情综合网| 欧美一区二区福利在线| 国产河南妇女毛片精品久久久 | 欧美a一区二区| www欧美成人18+| 国产91精品一区二区麻豆亚洲| 国产精品美女久久久久aⅴ国产馆| 成人精品在线视频观看| 夜夜精品浪潮av一区二区三区| 欧美精品九九99久久| 精品亚洲成a人| 国产精品视频第一区| 日本精品免费观看高清观看| 日韩va欧美va亚洲va久久| 欧美精品一区二区三区在线播放| 丰满亚洲少妇av| 亚洲一区二区精品视频| 日韩免费高清视频| 成人激情文学综合网| 亚洲福利一区二区三区| 精品国产一区二区三区av性色| 成人免费视频播放| 五月婷婷另类国产| 久久久久久电影| 91久久精品国产91性色tv| 美国av一区二区| 亚洲欧洲性图库| 日韩一本二本av| 播五月开心婷婷综合| 青青草97国产精品免费观看 | 日韩精品中文字幕一区二区三区 | 偷拍一区二区三区| 国产欧美日韩综合精品一区二区| 色国产综合视频| 国产大陆精品国产| 日韩成人午夜电影| 亚洲欧美另类久久久精品2019| 日韩小视频在线观看专区| 成人激情校园春色| 久久国产剧场电影| 亚洲免费观看在线视频| 久久久久国产成人精品亚洲午夜| 欧美在线观看禁18| gogo大胆日本视频一区| 国产综合一区二区| 日韩成人精品在线观看| 亚洲欧美日韩在线| 国产欧美一区二区精品秋霞影院| 日韩欧美中文字幕精品| 欧美亚洲日本一区| 99国产精品国产精品久久| 国产精品香蕉一区二区三区| 日韩av电影免费观看高清完整版 | 日本成人在线看| 亚洲永久免费av| 亚洲色图色小说| 国产日韩欧美一区二区三区乱码| 日韩精品在线网站| 日韩亚洲欧美中文三级| 欧美挠脚心视频网站| 一本大道综合伊人精品热热| 成人免费av网站| 东方欧美亚洲色图在线| 国产麻豆视频一区| 国产一区二区三区香蕉| 久久国产尿小便嘘嘘| 久久不见久久见免费视频1| 日韩在线观看一区二区| 亚洲成av人影院| 性做久久久久久免费观看欧美| 一区二区三区精品久久久| 亚洲美女在线国产| 一区二区三区不卡在线观看| 一区二区三区四区不卡在线 | 777xxx欧美| 日韩一区二区三区电影| 日韩一区二区在线观看| 日韩一级片在线播放| 久久久夜色精品亚洲| 国产日韩欧美在线一区| 国产精品传媒视频| 亚洲三级视频在线观看| 亚洲主播在线观看| 日韩精品电影在线观看| 精一区二区三区| 国产成人av电影在线| 99久久免费国产| 91福利视频久久久久| 欧美日韩高清不卡| 精品国产网站在线观看| 欧美国产日韩亚洲一区| 亚洲欧洲日产国码二区| 亚洲午夜精品在线| 日韩精品久久理论片| 国产一区二区看久久| 99久久99久久免费精品蜜臀| 日本丶国产丶欧美色综合| 在线观看视频91| 91精品国产入口| 中文字幕不卡三区| 亚洲成人先锋电影| 国产成人精品免费看| 欧美性猛交xxxxxx富婆| 欧美成人精品二区三区99精品| 国产精品水嫩水嫩| 午夜久久久久久| 国产成人一区二区精品非洲| 在线观看亚洲一区| 久久亚洲综合色| 亚洲成人精品一区| 成人免费视频app| 欧美一区国产二区| 亚洲欧美日韩国产手机在线 | 亚洲欧美一区二区三区久本道91| 国产欧美日韩久久| 波多野结衣在线一区| 欧美日韩精品一区视频| 91国偷自产一区二区三区观看| 欧美日韩精品一区二区三区蜜桃| 久久蜜桃av一区精品变态类天堂 | av在线这里只有精品| 日韩一区二区三区电影 | 午夜激情一区二区三区| 国产99精品国产| 久久综合狠狠综合| 日本不卡高清视频| 欧美嫩在线观看| 午夜视频在线观看一区二区三区| 色综合av在线| 一区二区三区在线播放| 91丨九色丨蝌蚪富婆spa| 国产精品久久久久久福利一牛影视 | 成人免费视频caoporn| 国产欧美日韩视频在线观看| 国产电影一区二区三区|