最新的支持向量機工具箱,有了它會很方便 1. Find time to write a proper list of things to do! 2. Documentation. 3. Support Vector Regression. 4. Automated model selection. REFERENCES ========== [1] V.N. Vapnik, "The Nature of Statistical Learning Theory", Springer-Verlag, New York, ISBN 0-387-94559-8, 1995. [2] J. C. Platt, "Fast training of support vector machines using sequential minimal optimization", in Advances in Kernel Methods - Support Vector Learning, (Eds) B. Scholkopf, C. Burges, and A. J. Smola, MIT Press, Cambridge, Massachusetts, chapter 12, pp 185-208, 1999. [3] T. Joachims, "estimating the Generalization Performance of a SVM Efficiently", LS-8 Report 25, Universitat Dortmund, Fachbereich Informatik, 1999.
標簽:
支持向量機
工具箱
上傳時間:
2013-12-16
上傳用戶:亞亞娟娟123
A general technique for the recovery of signicant
image features is presented. The technique is based on
the mean shift algorithm, a simple nonparametric pro-
cedure for estimating density gradients. Drawbacks of
the current methods (including robust clustering) are
avoided. Feature space of any nature can be processed,
and as an example, color image segmentation is dis-
cussed. The segmentation is completely autonomous,
only its class is chosen by the user. Thus, the same
program can produce a high quality edge image, or pro-
vide, by extracting all the signicant colors, a prepro-
cessor for content-based query systems. A 512 512
color image is analyzed in less than 10 seconds on a
standard workstation. Gray level images are handled
as color images having only the lightness coordinate
標簽:
technique
presented
features
recovery
上傳時間:
2015-10-14
上傳用戶:410805624