亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? LIBSVM 是臺灣大學林智仁 (Chih-Jen Lin) 博士等開發設計的一個操作簡單、易于使用、快速有效的通用 SVM 軟件包
??
?? 第 1 頁 / 共 2 頁
字號:
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It solves C-SVM classification, nu-SVMclassification, one-class-SVM, epsilon-SVM regression, and nu-SVMregression. It also provides an automatic model selection tool forC-SVM classification. This document explains the use of libsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Table of Contents=================- Quick Start- Installation and Data Format- `svm-train' Usage- `svm-predict' Usage- `svm-scale' Usage- Tips on Practical Use- Examples- Precomputed Kernels - Library Usage- Java Version- Building Windows Binaries- Additional Tools: Sub-sampling, Parameter Selection, Format checking, etc.- Python Interface- Additional InformationQuick Start===========If you are new to SVM and if the data is not large, please go to `tools' directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection.Usage: easy.py training_file [testing_file]More information about parameter selection can be found in`tools/README.'Installation and Data Format============================On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them (e.g., see'Building Windows binaries' in this file) or use the pre-builtbinaries (Windows binaries are in the directory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......Each line contains an instance and is ended by a '\n' character.  Forclassification, <label> is an integer indicating the class label(multi-class is supported). For regression, <label> is the targetvalue which can be any real number. For one-class SVM, it's not usedso can be any number.  Except using precomputed kernels (explained inanother section), <index>:<value> gives a feature (attribute) value.<index> is an integer starting from 1 and <value> is a realnumber. Indices must be in ASCENDING order. Labels in the testingfile are only used to calculate accuracy or errors. If they areunknown, just fill the first column with any numbers.A sample classification data included in this package is`heart_scale'. To check if your data is in a correct form, use`tools/checkdata.py' (details in `tools/README').Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. If you have a testset called heart_scale.t, then type `svm-predict heart_scale.theart_scale.model output' to see the prediction accuracy. The `output'file contains the predicted class labels.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1, 2 or 3 (i.e., up to three classes are supported), "load"	button to load data from a file, "save" button to save data to	a file, "run" button to obtain an SVM model, and "clear"	button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the	classification but not the regression case. Each data point	has one label (the color) which must be 1, 2, or 3 and two	attributes (x-axis and y-axis values) in [0,1].	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(available from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(available from http://www.gtk.org)		The pre-built Windows binaries are in the `windows'	directory. We use Visual C++ on a 32-bit machine, so the	maximal cache size is 2GB.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)	4 -- precomputed kernel (kernel values in training_set_file)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 100)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates: whether to train an SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.See libsvm FAQ for the meaning of outputs.`svm-predict' Usage===================Usage: svm-predict [options] test_file model_file output_fileoptions:-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supportedmodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.`svm-scale' Usage=================Usage: svm-scale [options] data_filenameoptions:-l lower : x scaling lower limit (default -1)-u upper : x scaling upper limit (default +1)-y y_lower y_upper : y scaling limits (default: no y scaling)-s save_filename : save scaling parameters to save_filename-r restore_filename : restore scaling parameters from restore_filenameSee 'Examples' in this file for examples.Tips on Practical Use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, consider using the model selection tool in the tools directory.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).* Specify larger cache size (i.e., larger -m) for huge problems.Examples========> svm-scale -l -1 -u 1 -s range train > train.scale> svm-scale -r range test > test.scaleScale each feature of the training data to be in [-1,1]. Scalingfactors are stored in the file range and then used for scaling thetest data.> svm-train -s 0 -c 5 -t 2 -g 0.5 -e 0.1 data_file Train a classifier with RBF kernel exp(-0.5|u-v|^2), C=10, andstopping tolerance 0.1.> svm-train -s 3 -p 0.1 -t 0 data_fileSolve SVM regression with linear kernel u'v and epsilon=0.1in the loss function.> svm-train -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 = 1 * 10 for class 1 and penalty 50= 5 * 50 for class -1.> svm-train -s 0 -c 100 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 100 and gamma = 0.1> svm-train -s 0 -b 1 data_file> svm-predict -b 1 test_file data_file.model output_fileObtain a model with probability information and predict test data withprobability estimatesPrecomputed Kernels ===================Users may precompute kernel values and input them as training andtesting files.  Then libsvm does not need the originaltraining/testing sets.Assume there are L training instances x1, ..., xL and. Let K(x, y) be the kernelvalue of two instances x and y. The input formatsare:New training instance for xi:<label> 0:i 1:K(xi,x1) ... L:K(xi,xL) New testing instance for any x:<label> 0:? 1:K(x,x1) ... L:K(x,xL) That is, in the training file the first column must be the "ID" ofxi. In testing, ? can be any value.All kernel values including ZEROs must be explicitly provided.  Anypermutation or random subsets of the training/testing files are alsovalid (see examples below).Note: the format is slightly different from the precomputed kernelpackage released in libsvmtools earlier.Examples:	Assume the original training data has three four-feature	instances and testing data has one instance:	15  1:1 2:1 3:1 4:1	45      2:3     4:3	25          3:1	15  1:1     3:1	If the linear kernel is used, we have the following new	training/testing sets:	15  0:1 1:4 2:6  3:1	45  0:2 1:6 2:18 3:0 	25  0:3 1:1 2:0  3:1 	15  0:? 1:2 2:0  3:1	? can be any value.	Any subset of the above training file is also valid. For example,	25  0:3 1:1 2:0  3:1	45  0:2 1:6 2:18 3:0 	implies that the kernel matrix is		[K(2,2) K(2,3)] = [18 0]		[K(3,2) K(3,3)] = [0  1]Library Usage=============These functions and structures are declared in the header file`svm.h'.  You need to #include "svm.h" in your C/C++ source files andlink your program with `svm.cpp'. You can see `svm-train.c' and`svm-predict.c' for examples showing how to use them. We defineLIBSVM_VERSION in svm.h, so you can check the version number.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector. 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本一区二区电影| 亚洲视频香蕉人妖| 国产精品久久久久久久裸模| 久久精品国产亚洲aⅴ| 亚洲综合色噜噜狠狠| 亚洲人成网站色在线观看| 国产精品伦理一区二区| 中文字幕免费一区| 亚洲女同女同女同女同女同69| 亚洲色欲色欲www在线观看| 国产精品久久久久久久久果冻传媒| 中文字幕中文字幕在线一区| 亚洲欧美日韩一区二区三区在线观看| 亚洲欧美日韩国产另类专区| 亚洲精选免费视频| 同产精品九九九| 国产综合色产在线精品| 99热这里都是精品| 欧美午夜宅男影院| 日韩精品综合一本久道在线视频| 国产精品18久久久久久vr| 国产一区二区h| 欧美久久一二三四区| 欧美高清视频不卡网| 欧美成人一区二区三区在线观看| 精品少妇一区二区三区日产乱码| 久久久久9999亚洲精品| 一区二区不卡在线视频 午夜欧美不卡在| 亚洲综合久久久久| 久久99精品国产麻豆婷婷 | 日韩高清一级片| 久久精品久久久精品美女| 成人网页在线观看| 欧美日韩极品在线观看一区| 国产色产综合色产在线视频| 一区2区3区在线看| 国产成人综合在线观看| 在线观看av一区| 久久精品一区蜜桃臀影院| 亚洲午夜精品在线| av影院午夜一区| 精品国产精品一区二区夜夜嗨| 中文字幕亚洲综合久久菠萝蜜| 青椒成人免费视频| 在线免费观看不卡av| 国产日韩精品一区| 老鸭窝一区二区久久精品| 欧美性三三影院| 中文字幕在线播放不卡一区| 久久99精品国产| 欧美一区二区三区白人| 亚洲美女精品一区| 成人免费视频caoporn| 精品久久久久久久人人人人传媒 | 亚洲一区在线电影| 福利电影一区二区| 精品国产不卡一区二区三区| 性做久久久久久久免费看| 一本大道av伊人久久综合| 久久噜噜亚洲综合| 奇米影视一区二区三区| 国产欧美日韩精品a在线观看| 99re成人精品视频| 91社区在线播放| 国产精品大尺度| 成人永久免费视频| 欧美激情在线看| 国产精品综合网| 久久蜜桃av一区二区天堂| 韩国三级中文字幕hd久久精品| 欧美高清hd18日本| 日韩在线一二三区| 91精品国产综合久久精品图片| 亚洲一区二区三区爽爽爽爽爽| 91免费在线视频观看| 亚洲毛片av在线| 欧美日韩在线播放一区| 亚洲777理论| 777a∨成人精品桃花网| 日韩av二区在线播放| 日韩欧美国产麻豆| 日韩视频一区二区三区| 在线电影院国产精品| 中文字幕在线不卡| 91视频91自| 一区二区三区四区国产精品| 色伊人久久综合中文字幕| 亚洲国产日韩精品| 日韩精品中午字幕| 国产一区二区三区黄视频| 国产欧美一区视频| 91美女片黄在线| 午夜精品久久久久久不卡8050| 91精品国产综合久久香蕉麻豆| 久久99精品久久久| 久久免费视频一区| 一本大道久久a久久精二百 | 一区二区三区日韩欧美精品| 在线看一区二区| 久久精品国产99久久6| 国产日韩欧美精品电影三级在线| 99久久国产免费看| 精品在线亚洲视频| 国产精品国产三级国产aⅴ入口 | 国产在线乱码一区二区三区| 欧美激情一区二区三区蜜桃视频 | 久久久久久**毛片大全| 99久久99久久久精品齐齐| 午夜精彩视频在线观看不卡| 久久亚洲二区三区| 欧美三级在线看| 国产一区二区免费视频| 亚洲人成小说网站色在线| 欧美xxxx老人做受| 欧洲精品视频在线观看| 国产麻豆精品在线| 亚洲va在线va天堂| 国产精品日韩精品欧美在线| 6080日韩午夜伦伦午夜伦| eeuss鲁片一区二区三区| 免费观看一级欧美片| 亚洲人一二三区| 精品国产污污免费网站入口| 欧美视频一区二区三区在线观看| 国产风韵犹存在线视精品| 亚洲成人精品影院| 国产一区二区精品久久| 国产一区二区久久| 欧美日韩久久不卡| 91官网在线免费观看| 国产成人av一区| 美女视频第一区二区三区免费观看网站 | 欧美色图免费看| 成人av片在线观看| 国产乱人伦偷精品视频免下载| 日韩av高清在线观看| 亚洲一区二区三区美女| 亚洲天天做日日做天天谢日日欢| 国产日韩欧美不卡在线| 精品精品国产高清一毛片一天堂| 欧美色综合久久| 色香蕉久久蜜桃| 91麻豆高清视频| 99久久婷婷国产综合精品电影| 岛国av在线一区| 成人a级免费电影| av亚洲产国偷v产偷v自拍| 狠狠色伊人亚洲综合成人| 亚洲电影你懂得| 国产亚洲成aⅴ人片在线观看| 日韩一二三区不卡| 在线观看区一区二| 97久久超碰国产精品| 成人a级免费电影| www.日韩大片| 91老师国产黑色丝袜在线| 99久久99久久久精品齐齐| 色综合久久88色综合天天| 色欧美乱欧美15图片| 欧美在线高清视频| 在线播放91灌醉迷j高跟美女| 7777精品伊人久久久大香线蕉超级流畅 | 亚洲国产成人在线| 天堂蜜桃一区二区三区 | 精品人伦一区二区色婷婷| 精品久久久久久最新网址| 国产网站一区二区| 亚洲三级在线看| 亚洲国产aⅴ成人精品无吗| 亚洲一区二区三区在线看| 三级不卡在线观看| 国产综合色产在线精品| 91在线观看视频| 91麻豆精品国产| 欧美激情一区二区三区四区| 亚洲视频免费看| 日本欧美久久久久免费播放网| 国产成人精品网址| 欧美最新大片在线看| 精品国产免费久久| 亚洲人成网站在线| 老司机免费视频一区二区| 99精品视频一区二区| 91精品蜜臀在线一区尤物| 国产日韩一级二级三级| 亚洲高清视频中文字幕| 国产乱码精品1区2区3区| 色视频成人在线观看免| 久久久美女艺术照精彩视频福利播放| 亚洲日本在线a| 国产又粗又猛又爽又黄91精品| 一本一道波多野结衣一区二区 | 麻豆91免费看| 91福利国产成人精品照片| 精品国产乱码久久久久久图片| 亚洲综合区在线| 成人高清视频在线| 精品国产亚洲一区二区三区在线观看| 亚洲激情一二三区| 国产精品主播直播|