亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? LIBSVM 是臺灣大學林智仁 (Chih-Jen Lin) 博士等開發設計的一個操作簡單、易于使用、快速有效的通用 SVM 軟件包
??
?? 第 1 頁 / 共 2 頁
字號:
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It solves C-SVM classification, nu-SVMclassification, one-class-SVM, epsilon-SVM regression, and nu-SVMregression. It also provides an automatic model selection tool forC-SVM classification. This document explains the use of libsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Table of Contents=================- Quick Start- Installation and Data Format- `svm-train' Usage- `svm-predict' Usage- `svm-scale' Usage- Tips on Practical Use- Examples- Precomputed Kernels - Library Usage- Java Version- Building Windows Binaries- Additional Tools: Sub-sampling, Parameter Selection, Format checking, etc.- Python Interface- Additional InformationQuick Start===========If you are new to SVM and if the data is not large, please go to `tools' directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection.Usage: easy.py training_file [testing_file]More information about parameter selection can be found in`tools/README.'Installation and Data Format============================On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them (e.g., see'Building Windows binaries' in this file) or use the pre-builtbinaries (Windows binaries are in the directory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......Each line contains an instance and is ended by a '\n' character.  Forclassification, <label> is an integer indicating the class label(multi-class is supported). For regression, <label> is the targetvalue which can be any real number. For one-class SVM, it's not usedso can be any number.  Except using precomputed kernels (explained inanother section), <index>:<value> gives a feature (attribute) value.<index> is an integer starting from 1 and <value> is a realnumber. Indices must be in ASCENDING order. Labels in the testingfile are only used to calculate accuracy or errors. If they areunknown, just fill the first column with any numbers.A sample classification data included in this package is`heart_scale'. To check if your data is in a correct form, use`tools/checkdata.py' (details in `tools/README').Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. If you have a testset called heart_scale.t, then type `svm-predict heart_scale.theart_scale.model output' to see the prediction accuracy. The `output'file contains the predicted class labels.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1, 2 or 3 (i.e., up to three classes are supported), "load"	button to load data from a file, "save" button to save data to	a file, "run" button to obtain an SVM model, and "clear"	button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the	classification but not the regression case. Each data point	has one label (the color) which must be 1, 2, or 3 and two	attributes (x-axis and y-axis values) in [0,1].	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(available from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(available from http://www.gtk.org)		The pre-built Windows binaries are in the `windows'	directory. We use Visual C++ on a 32-bit machine, so the	maximal cache size is 2GB.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)	4 -- precomputed kernel (kernel values in training_set_file)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 100)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-b probability_estimates: whether to train an SVC or SVR model for probability estimates, 0 or 1 (default 0)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.See libsvm FAQ for the meaning of outputs.`svm-predict' Usage===================Usage: svm-predict [options] test_file model_file output_fileoptions:-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supportedmodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.`svm-scale' Usage=================Usage: svm-scale [options] data_filenameoptions:-l lower : x scaling lower limit (default -1)-u upper : x scaling upper limit (default +1)-y y_lower y_upper : y scaling limits (default: no y scaling)-s save_filename : save scaling parameters to save_filename-r restore_filename : restore scaling parameters from restore_filenameSee 'Examples' in this file for examples.Tips on Practical Use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, consider using the model selection tool in the tools directory.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).* Specify larger cache size (i.e., larger -m) for huge problems.Examples========> svm-scale -l -1 -u 1 -s range train > train.scale> svm-scale -r range test > test.scaleScale each feature of the training data to be in [-1,1]. Scalingfactors are stored in the file range and then used for scaling thetest data.> svm-train -s 0 -c 5 -t 2 -g 0.5 -e 0.1 data_file Train a classifier with RBF kernel exp(-0.5|u-v|^2), C=10, andstopping tolerance 0.1.> svm-train -s 3 -p 0.1 -t 0 data_fileSolve SVM regression with linear kernel u'v and epsilon=0.1in the loss function.> svm-train -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 = 1 * 10 for class 1 and penalty 50= 5 * 50 for class -1.> svm-train -s 0 -c 100 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 100 and gamma = 0.1> svm-train -s 0 -b 1 data_file> svm-predict -b 1 test_file data_file.model output_fileObtain a model with probability information and predict test data withprobability estimatesPrecomputed Kernels ===================Users may precompute kernel values and input them as training andtesting files.  Then libsvm does not need the originaltraining/testing sets.Assume there are L training instances x1, ..., xL and. Let K(x, y) be the kernelvalue of two instances x and y. The input formatsare:New training instance for xi:<label> 0:i 1:K(xi,x1) ... L:K(xi,xL) New testing instance for any x:<label> 0:? 1:K(x,x1) ... L:K(x,xL) That is, in the training file the first column must be the "ID" ofxi. In testing, ? can be any value.All kernel values including ZEROs must be explicitly provided.  Anypermutation or random subsets of the training/testing files are alsovalid (see examples below).Note: the format is slightly different from the precomputed kernelpackage released in libsvmtools earlier.Examples:	Assume the original training data has three four-feature	instances and testing data has one instance:	15  1:1 2:1 3:1 4:1	45      2:3     4:3	25          3:1	15  1:1     3:1	If the linear kernel is used, we have the following new	training/testing sets:	15  0:1 1:4 2:6  3:1	45  0:2 1:6 2:18 3:0 	25  0:3 1:1 2:0  3:1 	15  0:? 1:2 2:0  3:1	? can be any value.	Any subset of the above training file is also valid. For example,	25  0:3 1:1 2:0  3:1	45  0:2 1:6 2:18 3:0 	implies that the kernel matrix is		[K(2,2) K(2,3)] = [18 0]		[K(3,2) K(3,3)] = [0  1]Library Usage=============These functions and structures are declared in the header file`svm.h'.  You need to #include "svm.h" in your C/C++ source files andlink your program with `svm.cpp'. You can see `svm-train.c' and`svm-predict.c' for examples showing how to use them. We defineLIBSVM_VERSION in svm.h, so you can check the version number.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector. 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91视频www| 日本不卡一二三区黄网| 亚洲欧美日韩国产另类专区| 一区二区三区欧美视频| 三级久久三级久久久| 狠狠色丁香婷综合久久| 成人av电影在线观看| 欧美日韩精品一区二区| 国产亚洲美州欧州综合国| 亚洲免费电影在线| 久久国产三级精品| gogo大胆日本视频一区| 欧美一区二区三区电影| 国产精品视频观看| 天堂一区二区在线免费观看| 国产99精品国产| 欧美日韩亚洲另类| 国产欧美日韩精品一区| 天天综合网天天综合色| 成人高清伦理免费影院在线观看| 欧美日本在线看| 中文字幕不卡一区| 日韩电影在线观看电影| 91亚洲精品乱码久久久久久蜜桃| 日韩三区在线观看| 亚洲日本在线a| 狠狠色伊人亚洲综合成人| 在线免费精品视频| 日本一区二区三区免费乱视频| 亚洲r级在线视频| 成人免费av资源| 欧美成人高清电影在线| 亚洲国产精品久久人人爱| 国产91丝袜在线18| 精品久久久久一区二区国产| 亚洲18女电影在线观看| av电影在线观看一区| 精品99一区二区三区| 亚洲成av人**亚洲成av**| 91亚洲精品一区二区乱码| 久久久99精品免费观看不卡| 日本午夜精品视频在线观看| 91福利小视频| 国产欧美日韩三级| 国产最新精品精品你懂的| 欧美精品1区2区| 亚洲国产另类av| 99re成人在线| 欧美午夜片在线观看| 成人欧美一区二区三区白人| 国产精品主播直播| 精品国产一区二区三区不卡| 午夜欧美电影在线观看| 色偷偷久久人人79超碰人人澡| 亚洲国产精品国自产拍av| 国产一区中文字幕| 欧美不卡一区二区三区四区| 人禽交欧美网站| 欧美日韩久久久一区| 亚洲成人福利片| 欧美性大战xxxxx久久久| 一区二区三区四区亚洲| 99re8在线精品视频免费播放| 中文字幕va一区二区三区| 国产美女视频91| 久久先锋资源网| 国内一区二区在线| 精品成人佐山爱一区二区| 久久99热这里只有精品| 日韩女优电影在线观看| 免费成人美女在线观看.| 7777精品伊人久久久大香线蕉 | 麻豆91精品91久久久的内涵| 在线成人免费观看| 日韩专区在线视频| 欧美一区二区精品| 久久99久久99精品免视看婷婷 | 国产资源在线一区| 2023国产一二三区日本精品2022| 久久国产精品第一页| 精品久久久久久久人人人人传媒 | 日本一区二区三区久久久久久久久不| 国产一区91精品张津瑜| 国产色婷婷亚洲99精品小说| 成人动漫中文字幕| 亚洲精品美国一| 欧美日韩国产一级片| 免费成人av在线| 久久久久九九视频| 99久精品国产| 亚洲国产精品综合小说图片区| 在线播放亚洲一区| 国内精品写真在线观看| 国产精品久久久久一区二区三区共 | 欧美一区二区精品在线| 狠狠久久亚洲欧美| 国产精品欧美一区喷水| 91猫先生在线| 日韩专区一卡二卡| 久久精品亚洲乱码伦伦中文| youjizz国产精品| 亚洲综合视频网| 日韩欧美色电影| 成人免费视频播放| 亚洲一区二区美女| 欧美大片一区二区| 成人黄色av网站在线| 亚洲h动漫在线| 久久久久亚洲蜜桃| 色婷婷狠狠综合| 美女在线视频一区| 中文字幕中文字幕中文字幕亚洲无线| 欧美三级中文字幕在线观看| 韩国av一区二区三区在线观看| 亚洲欧美自拍偷拍色图| 在线成人av网站| 成人免费毛片a| 首页国产欧美久久| 欧美国产精品中文字幕| 在线不卡一区二区| caoporm超碰国产精品| 蜜臀久久99精品久久久久久9| 中文字幕免费一区| 欧美一区二区三区免费视频| www.欧美色图| 青青草97国产精品免费观看 | 91小宝寻花一区二区三区| 午夜精品久久久久影视| 欧美精彩视频一区二区三区| 91.成人天堂一区| av在线这里只有精品| 六月婷婷色综合| 一区二区三区日韩欧美精品| 久久午夜国产精品| 欧美日韩日日骚| a亚洲天堂av| 国产在线精品一区在线观看麻豆| 亚洲精品欧美在线| 久久久亚洲精华液精华液精华液 | 蜜桃av噜噜一区二区三区小说| 国产精品九色蝌蚪自拍| 日韩美女天天操| 欧美日韩一区二区三区视频 | 亚洲少妇30p| 国产欧美日韩在线看| 日韩精品一区二区三区中文不卡 | 丝瓜av网站精品一区二区| 亚洲视频狠狠干| 国产欧美一区二区精品秋霞影院 | 国产一区二区三区国产| 日韩精品国产欧美| 亚洲精品免费播放| 国产精品不卡在线| 国产亲近乱来精品视频| 精品日韩欧美在线| 91麻豆精品国产91| 欧美日韩卡一卡二| 欧美午夜精品久久久久久超碰| 色综合视频一区二区三区高清| 国产精品911| 经典三级一区二区| 石原莉奈在线亚洲三区| 亚洲一区二区成人在线观看| 亚洲欧洲精品成人久久奇米网 | 色老汉一区二区三区| 成人黄色av网站在线| 高清不卡在线观看| 国产高清精品网站| 国产一区在线看| 国产老女人精品毛片久久| 久久精品国产一区二区| 日本v片在线高清不卡在线观看| 五月婷婷综合在线| 亚洲成人免费av| 亚洲18色成人| 天天综合日日夜夜精品| 香港成人在线视频| 亚洲成人自拍偷拍| 性欧美大战久久久久久久久| 亚洲成av人片在线观看无码| 亚洲成人免费在线观看| 午夜欧美一区二区三区在线播放| 偷窥国产亚洲免费视频| 亚洲mv在线观看| 蜜桃91丨九色丨蝌蚪91桃色| 久久精品免费看| 国产一区 二区| 成人夜色视频网站在线观看| 99免费精品视频| 91看片淫黄大片一级在线观看| 一本一本大道香蕉久在线精品| 91黄色免费观看| 欧美日韩精品综合在线| 欧美一区二区三区免费在线看| 欧美大度的电影原声| 久久五月婷婷丁香社区| 国产精品嫩草影院av蜜臀| 日韩毛片精品高清免费| 亚洲成人在线免费| 另类人妖一区二区av|